// (c) 2023-2025 Fair Isaac Corporation
import static com.dashoptimization.objects.Utils.scalarProduct;
import static com.dashoptimization.objects.Utils.sum;
import com.dashoptimization.ColumnType;
import com.dashoptimization.DefaultMessageListener;
import com.dashoptimization.XPRSconstants;
import com.dashoptimization.XPRSenumerations;
import com.dashoptimization.objects.LinExpression;
import com.dashoptimization.objects.LinTermMap;
import com.dashoptimization.objects.Variable;
import com.dashoptimization.objects.XpressProblem;
/**
* Economic lot sizing, ELS, problem. Solved by adding (l,S)-inequalities in
* several rounds looping over the root node.
*
* ELS considers production planning over a horizon of T periods. In period t,
* t=1,...,T, there is a given demand DEMAND[t] that must be satisfied by
* production prod[t] in period t and by inventory carried over from previous
* periods. There is a set-up up cost SETUPCOST[t] associated with production in
* period t. The unit production cost in period t is PRODCOST[t]. There is no
* inventory or stock-holding cost.
*/
public class ELS {
private static final double EPS = 1e-6;
private static final int T = 6; /* Number of time periods */
/* Data */
private static final double[] DEMAND = { 1, 3, 5, 3, 4, 2 }; /* Demand per period */
private static final double[] SETUPCOST = { 17, 16, 11, 6, 9, 6 }; /* Setup cost / period */
private static final double[] PRODCOST = { 5, 3, 2, 1, 3, 1 }; /* Prod. cost / period */
private static double[][] D; /* Total demand in periods t1 - t2 */
/* Variables and constraints */
private static Variable[] prod; /* Production in period t */
private static Variable[] setup; /* Setup in period t */
/***********************************************************************/
private static void modEls(XpressProblem p) {
D = new double[T][T];
for (int s = 0; s < T; s++)
for (int t = 0; t < T; t++)
for (int k = s; k <= t; k++)
D[s][t] += DEMAND[k];
// Variables
prod = p.addVariables(T).withType(ColumnType.Continuous).withName(t -> String.format("prod%d", t + 1))
.toArray();
setup = p.addVariables(T).withType(ColumnType.Binary).withName(t -> String.format("setup%d", t + 1)).toArray();
// Objective: Minimize total cost
p.setObjective(sum(scalarProduct(setup, SETUPCOST), scalarProduct(prod, PRODCOST)),
XPRSenumerations.ObjSense.MINIMIZE);
// Constraints
// Production in period t must not exceed the total demand for the
// remaining periods; if there is production during t then there
// is a setup in t
// for all t in [0,T[
// prod[t] <= setup[t] * D[t][T-1]
p.addConstraints(T, t -> prod[t].leq(setup[t].mul(D[t][T - 1])).setName(String.format("Production_%d", t)));
// Production in periods 0 to t must satisfy the total demand
// during this period of time
// for all t in [0,T[
// sum(s in [0,t+1[) prod[s] >= D[0][t]
p.addConstraints(T, t -> sum(t + 1, s -> prod[s]).geq(D[0][t]).setName(String.format("Demand_%d", t)));
p.writeProb("ELS.lp", "l");
}
/**************************************************************************/
/* Cut generation loop at the top node: */
/* solve the LP and save the basis */
/* get the solution values */
/* identify and set up violated constraints */
/* load the modified problem and load the saved basis */
/**************************************************************************/
private static void solveEls(XpressProblem p) {
p.callbacks.addMessageCallback(DefaultMessageListener::console);
/* Disable automatic cuts - we use our own */
p.controls().setCutStrategy(XPRSconstants.CUTSTRATEGY_NONE);
/* Switch presolve off */
p.controls().setPresolve(XPRSconstants.PRESOLVE_NONE);
int ncut = 0, npass = 0, npcut = 0;
long starttime = System.currentTimeMillis();
double[] sol;
do {
p.writeProb("model" + npass + ".lp", "l");
npass++;
npcut = 0;
// Solve the LP-problem
p.lpOptimize();
if (p.attributes().getSolStatus() != XPRSenumerations.SolStatus.OPTIMAL)
throw new RuntimeException("failed to optimize with status " + p.attributes().getSolStatus());
// Get the solution values:
sol = p.getSolution();
// Search for violated constraints:
for (int l = 0; l < T; l++) {
double ds = 0.0;
for (int t = 0; t <= l; t++) {
if (prod[t].getValue(sol) < D[t][l] * setup[t].getValue(sol) + EPS) {
ds += prod[t].getValue(sol);
} else {
ds += D[t][l] * setup[t].getValue(sol);
}
}
/*
* Add the violated inequality: the minimum of the actual production prod[t] and
* the maximum potential production D[t][l]*setup[t] in periods 0 to l must at
* least equal the total demand in periods 0 to l. sum(t=1:l) min(prod[t],
* D[t][l]*setup[t]) >= D[0][l]
*/
if (ds < D[0][l] - EPS) {
LinExpression cut = new LinTermMap(0);
for (int t = 0; t <= l; t++) {
if (prod[t].getValue(sol) < D[t][l] * setup[t].getValue(sol) + EPS)
cut.addTerm(prod[t], 1.0);
else
cut.addTerm(setup[t], D[t][l]);
}
p.addConstraint(cut.geq(D[0][l]).setName(String.format("cut_%d", ncut + 1)));
ncut++;
npcut++;
}
}
System.out.println(String.format("Iteration %d, %.2f sec, objective value: %f, cuts added: %d (total %d)",
npass, (System.currentTimeMillis() - starttime) / 1000.0, p.attributes().getObjVal(), npcut, ncut));
if (npcut == 0)
System.out.println("Optimal integer solution found:");
} while (npcut > 0);
// Print out the solution:
for (int t = 0; t < T; t++) {
System.out.println(String.format("Period %d: prod %.1f (demand: %.0f, cost: %.0f), setup %.0f (cost %.0f)",
t + 1, prod[t].getValue(sol), DEMAND[t], PRODCOST[t], setup[t].getValue(sol), SETUPCOST[t]));
}
}
public static void main(String[] args) {
try (XpressProblem prob = new XpressProblem()) {
modEls(prob); // Model the problem
solveEls(prob); // Solve the problem
}
}
}
|
// (c) 2023-2025 Fair Isaac Corporation
import static com.dashoptimization.objects.Utils.scalarProduct;
import static com.dashoptimization.objects.Utils.sum;
import com.dashoptimization.ColumnType;
import com.dashoptimization.DefaultMessageListener;
import com.dashoptimization.XPRSconstants;
import com.dashoptimization.XPRSenumerations;
import com.dashoptimization.objects.LinExpression;
import com.dashoptimization.objects.LinTermMap;
import com.dashoptimization.objects.Variable;
import com.dashoptimization.objects.XpressProblem;
import com.dashoptimization.objects.XpressProblem.CallbackAPI.OptNodeCallback;
/**
* Economic lot sizing, ELS, problem. Solved by adding (l,S)-inequalities) in a
* branch-and-cut heuristic (using the cut manager).
*
* ELS considers production planning over a horizon of T periods. In period t,
* t=1,...,T, there is a given demand DEMAND[t] that must be satisfied by
* production prod[t] in period t and by inventory carried over from previous
* periods. There is a set-up up cost SETUPCOST[t] associated with production in
* period t. The unit production cost in period t is PRODCOST[t]. There is no
* inventory or stock-holding cost.
*
* *** This model cannot be run with a Community Licence ***
*/
public class ELSCut {
private static final double EPS = 1e-6;
private static final int T = 6; /* Number of time periods */
/* Data */
private static final double[] DEMAND = { 1, 3, 5, 3, 4, 2 }; /* Demand per period */
private static final double[] SETUPCOST = { 17, 16, 11, 6, 9, 6 }; /* Setup cost / period */
private static final double[] PRODCOST = { 5, 3, 2, 1, 3, 1 }; /* Prod. cost / period */
private static double[][] D; /* Total demand in periods t1 - t2 */
/* Variables and constraints */
private static Variable[] prod; /* Production in period t */
private static Variable[] setup; /* Setup in period t */
private static void printProblemStatus(XpressProblem prob) {
System.out.println(String.format(
"Problem status:%n\tSolve status: %s%n\tLP status: %s%n\tMIP status: %s%n\tSol status: %s",
prob.attributes().getSolveStatus(), prob.attributes().getLPStatus(), prob.attributes().getMIPStatus(),
prob.attributes().getSolStatus()));
}
/**************************************************************************/
/* Cut generation algorithm: */
/* get the solution values */
/* identify and set up violated constraints */
/* add cuts to the problem */
/**************************************************************************/
static class CutNodeCallback implements OptNodeCallback {
public int optNode(XpressProblem p) {
double[] sol, slack, duals, djs;
int ncut = 0;
// Add cut only to optimal relaxations
if (p.attributes().getLPStatus() != XPRSenumerations.LPStatus.OPTIMAL) {
return 0;
}
sol = p.getCallbackSolution();
slack = p.getCallbackSlacks();
duals = p.getCallbackDuals();
djs = p.getCallbackRedCosts();
// Search for violated constraints:
for (int l = 0; l < T; l++) {
double ds = 0.0;
for (int t = 0; t <= l; t++) {
if (prod[t].getValue(sol) < D[t][l] * setup[t].getValue(sol) + EPS) {
ds += prod[t].getValue(sol);
} else {
ds += D[t][l] * setup[t].getValue(sol);
}
}
// Add the violated inequality: the minimum of the actual production
// prod[t] and the maximum potential production D[t][l]*setup[t]
// in periods 0 to l must at least equal the total demand in periods
// 0 to l.
// sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l] */
if (ds < D[0][l] - EPS) {
LinExpression cut = new LinTermMap(0);
for (int t = 0; t <= l; t++) {
if (prod[t].getValue(sol) < D[t][l] * setup[t].getValue(sol) + EPS) {
cut.addTerm(prod[t], 1.0);
} else {
cut.addTerm(setup[t], D[t][l]);
}
}
p.addCut(0, cut.geq(D[0][1]));
ncut++;
}
}
if (ncut > 0) {
System.out.println(String.format("Cuts added: %d (depth %d, node %d)", ncut,
p.attributes().getNodeDepth(), p.attributes().getNodes()));
}
return 0;
}
}
/***********************************************************************/
private static void modEls(XpressProblem p) {
D = new double[T][T];
for (int s = 0; s < T; s++)
for (int t = 0; t < T; t++)
for (int k = s; k <= t; k++)
D[s][t] += DEMAND[k];
// Variables
prod = p.addVariables(T).withType(ColumnType.Continuous).withName(t -> String.format("prod%d", t + 1))
.toArray();
setup = p.addVariables(T).withType(ColumnType.Binary).withName(t -> String.format("setup%d", t + 1)).toArray();
// Objective: Minimize total cost
p.setObjective(sum(scalarProduct(setup, SETUPCOST), scalarProduct(prod, PRODCOST)),
XPRSenumerations.ObjSense.MINIMIZE);
// Constraints
// Production in period t must not exceed the total demand for the
// remaining periods; if there is production during t then there
// is a setup in t
// for all t in [0,T[
// prod[t] <= setup[t] * D[t][T-1]
p.addConstraints(T, t -> prod[t].leq(setup[t].mul(D[t][T - 1])).setName(String.format("Production_%d", t)));
// Production in periods 0 to t must satisfy the total demand
// during this period of time
// for all t in [0,T[
// sum(s in [0,t+1[) prod[s] >= D[0][t]
p.addConstraints(T, t -> sum(t + 1, s -> prod[s]).geq(D[0][t]).setName(String.format("Demand_%d", t)));
p.writeProb("ELS.lp", "l");
}
/**************************************************************************/
/* Cut generation loop at the top node: */
/* solve the LP and save the basis */
/* get the solution values */
/* identify and set up violated constraints */
/* load the modified problem and load the saved basis */
/**************************************************************************/
private static void solveEls(XpressProblem p) {
p.callbacks.addMessageCallback(DefaultMessageListener::console);
p.controls().setLPLog(0);
p.controls().setMIPLog(3);
// Disable automatic cuts - we use our own
p.controls().setCutStrategy(XPRSconstants.CUTSTRATEGY_NONE);
// Switch presolve off
p.controls().setPresolve(XPRSconstants.PRESOLVE_NONE);
p.controls().setMIPPresolve(0);
/* Instantiate the cut class callback */
CutNodeCallback cb = new CutNodeCallback();
p.callbacks.addOptNodeCallback(cb);
/* Solve the MIP */
p.optimize();
if (p.attributes().getSolStatus() != XPRSenumerations.SolStatus.OPTIMAL)
throw new RuntimeException("optimization failed with status " + p.attributes().getSolStatus());
/* Get the solution values: */
double[] sol = p.getSolution();
/* Print out the solution: */
for (int t = 0; t < T; t++) {
System.out.println(String.format("Period %d: prod %.1f (demand: %.0f, cost: %.0f), setup %.0f (cost %.0f)",
t + 1, prod[t].getValue(sol), DEMAND[t], PRODCOST[t], setup[t].getValue(sol), SETUPCOST[t]));
}
printProblemStatus(p);
}
public static void main(String[] args) {
try (XpressProblem prob = new XpressProblem()) {
modEls(prob); // Model the problem
solveEls(prob); // Solve the problem
}
}
}
|