// (c) 2024-2025 Fair Isaac Corporation
#include <xpress.hpp>
#include <stdexcept> // For throwing exceptions
using namespace xpress;
using namespace xpress::objects;
using xpress::objects::utils::sum;
using xpress::objects::utils::pow;
using xpress::objects::utils::mul;
using xpress::objects::utils::div;
using xpress::objects::utils::scalarProduct;
/**
* A craftsman makes small wooden boxes for sale. He has four different types of box,
* and can make each type in any size (keeping all the dimensions in proportion), but
* all boxes of the same type must have the same size. The profit he makes on a box
* depends on the size. He has only a limited amount of the necessary wood available
* and a limited amount of time in the week to do the work. How many boxes should he
* make, and what size should they be, in order to maximize his profit?
*/
// A box.
class Box {
public:
const std::string name; // The name of this box.
const double lengthCoeff; // Relative length of this box.
const double widthCoeff; // Relative width of this box.
const double heightCoeff; // Relative height of this box.
const double profitCoeff; // Coefficient for the profit of this box, relative to its size.
const double timeCoeff; // Coefficient for the production time of this box, relative to its ply.
// Constructor
Box(std::string name,
double lengthCoeff, double widthCoeff, double heightCoeff,
double profitCoeff, double timeCoeff)
: name(name),
lengthCoeff(lengthCoeff), widthCoeff(widthCoeff), heightCoeff(heightCoeff),
profitCoeff(profitCoeff), timeCoeff(timeCoeff) {}
// Override toString() method
std::string toString() const {
return name;
}
// resources required: nrBattens = size * 4 * (lengthCoeff + widhtCoeff + heightCoeff)
double getBattensCoeff() const {
return 4 * (lengthCoeff + widthCoeff + heightCoeff);
}
// resources required: ply = size^2 * 2 * (lengthCoeff * widthCoeff + widthC * heightC + heightC * lengthC)
double getPlyCoeff() const {
return 2 * (lengthCoeff * widthCoeff + widthCoeff * heightCoeff + heightCoeff * lengthCoeff);
}
};
// The boxes used in this example.
const std::vector<Box> boxTypeArray = {
Box("Cube", 1, 1, 1, 20, 1),
Box("Oblong", 1, 2, 1, 27.3, 1),
Box("Flat", 4, 4, 1, 90, 1),
Box("Economy", 1, 2, 1, 10, 0.2)
};
// The resource constraints used in this example.
const double maxSize = 2.0;
const int maxNumProducedPerBoxType = 6;
const double maxNrBattens = 200.0;
const double maxPly = 210.0;
const double maxTime = 35.0;
int main() {
try {
// Create a problem instance with verbose messages printed to Console
XpressProblem prob;
prob.callbacks.addMessageCallback(XpressProblem::console);
// The number of each of the type of boxes that should be produced
std::vector<Variable> numProduced = prob.addVariables(static_cast<int>(boxTypeArray.size()))
.withType(ColumnType::Integer)
.withName("numProduced_%d")
.withUB(maxNumProducedPerBoxType)
.toArray();
// The relative size (a multiplier of length/width/height) of each of the box types to produce
std::vector<Variable> size = prob.addVariables(static_cast<int>(boxTypeArray.size()))
.withType(ColumnType::Continuous) // This is the default value so not required to specify
.withName("size_%d")
.withUB(maxSize)
.toArray();
/* Resource Availabililty Constraints */
// Construct Expression for ply required for each type of box
std::vector<Expression> plyPerBoxType(static_cast<int>(boxTypeArray.size()));
for (std::size_t i=0; i<boxTypeArray.size(); i++) {
// plyPerBoxType = numProduced * size^2 * plyCoeff
plyPerBoxType[i] = mul(numProduced[i], pow(size[i], 2.0)) * boxTypeArray[i].getPlyCoeff();
}
// Inspect the constructed Expression
std::cout << "Total ply: " << sum(plyPerBoxType).toString() << std::endl;
prob.addConstraint(sum(plyPerBoxType) <= maxPly);
/* Next, we construct a same type of resource constraint as above, but then for the total battens
* instead of ply. Except, instead of using sum and mul, we use scalarProduct.
*/
// First collect the BattensCoefficients into one vector. We do this using the std::transform function
// along with a lambda function from Box to double (similar to `map` function in Python if you are familiar)
std::vector<double> battensCoeffs(boxTypeArray.size());
std::transform(boxTypeArray.begin(), boxTypeArray.end(), battensCoeffs.begin(), [](Box box) {
return box.getBattensCoeff();
});
// battensPerBox = numProduced * size * battensCoeff
prob.addConstraint(scalarProduct(numProduced, size, battensCoeffs) <= maxNrBattens);
// Again a similar resource constraint as above, now for total time.
// We use a different way to use sum (now with a lambda function)
Expression totalTime = sum(static_cast<int>(boxTypeArray.size()), [&](int i) {
// timeNeededForBox = 1 + timeCoeff * 1.5^(ply/10)
Expression plyNeeded = pow(size[i], 2.0) * boxTypeArray[i].getPlyCoeff();
Expression timeNeeded = 1 + mul(boxTypeArray[i].timeCoeff, pow(1.5, div(plyNeeded, 10)));
return numProduced[i] * timeNeeded;
});
// Inspect the constructed Expression
std::cout << "Total time: " << totalTime.toString() << std::endl;
prob.addConstraint(totalTime <= maxTime);
/* Construct the objective */
Expression totalProfit = sum(static_cast<int>(boxTypeArray.size()), [&](int i) {
// profit = numProduced * size^1.5 * profitCoeff
return numProduced[i] * pow(size[i], 1.5) * boxTypeArray[i].profitCoeff;
});
// Inspect the constructed Expression
std::cout << "Total profit: " << totalProfit.toString() << std::endl;
// To make the objective linear, just maximize the objtransfercol and add non-linear constraint
Variable objtransfercol = prob.addVariable(ColumnType::Continuous, "objTransferCol");
prob.setObjective(objtransfercol, xpress::ObjSense::Maximize);
// Add the objective transfer row: objtransfercol = totalProfit
prob.addConstraint(objtransfercol == totalProfit);
// Dump the problem to disk so that we can inspect it.
prob.writeProb("Boxes02.lp");
// By default we will solve to global optimality, uncomment for an MISLP solve to local optimality
// prob.setNLPSolver(XPRS_NLPSOLVER_LOCAL);
// Solve
prob.optimize();
// Check the solution status
if (prob.attributes.getSolStatus() != SolStatus::Optimal && prob.attributes.getSolStatus() != SolStatus::Feasible) {
std::ostringstream oss; oss << prob.attributes.getSolStatus(); // Convert xpress::SolStatus to String
throw std::runtime_error("Optimization failed with status " + oss.str());
}
// Get the solution and print it
std::vector<double> sol = prob.getSolution();
std::cout << std::endl << "*** Solution ***" << std::endl;
// Printing the objective is currently not supported for nonlinear
// std::cout << "Objective: " + prob.getNLPObjVal();
// Print out the variables
for (std::size_t i = 0; i < boxTypeArray.size(); ++i) {
if (numProduced[i].getValue(sol) > 0.0) {
std::cout << "Producing " << numProduced[i].getValue(sol) << " "
<< boxTypeArray[i].toString() << " boxes of size "
<< size[i].getValue(sol) << "." << std::endl;
}
}
return 0;
}
catch (std::exception& e) {
std::cout << "Exception: " << e.what() << std::endl;
return -1;
}
}
|