Initializing help system before first use

generic_binary_constraint

Purpose
This constraint can be used to propagate a user-defined constraint over two variables (its propagation is based on the AC2001 algorithm (cf. [Bes01]).
Synopsis
function generic_binary_constraint(v1:cpvar, v2:cpvar, fct: function(integer, integer): boolean) : cpctr
function generic_binary_constraint(v1:cpvar,v2:cpvar, fctname:string) : cpctr
Arguments
v1 
the first decision variable
v2 
the second decision variable
fct 
reference to a function taking two integers as arguments and returning a boolean
fctname 
name of the function specifying the user-defined constraint, taking two integers as arguments and returning a boolean
Return value
A binary constraint over 'v1' and 'v2'
Example
The following example shows how to use the generic_binary_constraint constraint to solve the classical Euler Knight Tour problem:
model "Euler Knight Moves"
 uses "kalis"

 parameters
  S = 8                                  ! No. of rows/columns
 end-parameters

 N:= S * S                               ! Total number of cells
 setparam("KALIS_DEFAULT_LB", 0)
 setparam("KALIS_DEFAULT_UB", N-1)

 forward function valid_knight_move(a:integer, b:integer): boolean

 declarations
  PATH = 1..N                            ! Cells on the board
  pos: array(PATH) of cpvar              ! Position p in tour
 end-declarations

! Setting names of decision variables
 forall(i in PATH) setname(pos(i), "Position"+i)

! Fix the start position
 pos(1) = 0

! Each cell is visited once
 all_different(pos, KALIS_GEN_ARC_CONSISTENCY)

! The knight's path obeys the chess rules for valid knight moves
 forall(i in 1..N-1)
  generic_binary_constraint(pos(i), pos(i+1), ->valid_knight_move)
 generic_binary_constraint(pos(N), pos(1), ->valid_knight_move)

! Setting enumeration parameters
 cp_set_branching(probe_assign_var(KALIS_SMALLEST_MIN,
                  KALIS_MAX_TO_MIN, pos, 14))

! Search for up to NBSOL solutions
 solct:= 0
 if not cp_find_next_sol then
  writeln("No solution")
 else
  writeln(pos)
 end-if

! **** Test whether the move from a to b is admissible ****
 function valid_knight_move(a:integer, b:integer): boolean
  declarations
   xa,ya,xb,yb,delta_x,delta_y: integer
  end-declarations
  xa := a div S
  ya := a mod S
  xb := b div S
  yb := b mod S
  delta_x := abs(xa-xb)
  delta_y := abs(ya-yb)
  returned := (delta_x<=2) and (delta_y<=2) and (delta_x+delta_y=3)
 end-function

end-model


© 2001-2025 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.