// (c) 2024-2025 Fair Isaac Corporation
#include <stdexcept> // For throwing exceptions
#include <xpress.hpp>
using namespace xpress;
using namespace xpress::objects;
using xpress::objects::utils::div;
using xpress::objects::utils::mul;
using xpress::objects::utils::pow;
using xpress::objects::utils::scalarProduct;
using xpress::objects::utils::sum;
/**
* A craftsman makes small wooden boxes for sale. He has four different types of
* box, and can make each type in any size (keeping all the dimensions in
* proportion), but all boxes of the same type must have the same size. The
* profit he makes on a box depends on the size. He has only a limited amount of
* the necessary wood available and a limited amount of time in the week to do
* the work. How many boxes should he make, and what size should they be, in
* order to maximize his profit?
*/
// A box.
class Box {
public:
const std::string name; // The name of this box.
const double lengthCoeff; // Relative length of this box.
const double widthCoeff; // Relative width of this box.
const double heightCoeff; // Relative height of this box.
const double profitCoeff; // Coefficient for the profit of this box, relative
// to its size.
const double timeCoeff; // Coefficient for the production time of this box,
// relative to its ply.
// Constructor
Box(std::string name, double lengthCoeff, double widthCoeff,
double heightCoeff, double profitCoeff, double timeCoeff)
: name(name), lengthCoeff(lengthCoeff), widthCoeff(widthCoeff),
heightCoeff(heightCoeff), profitCoeff(profitCoeff),
timeCoeff(timeCoeff) {}
// Override toString() method
std::string toString() const { return name; }
// resources required: nrBattens = size * 4 * (lengthCoeff + widhtCoeff +
// heightCoeff)
double getBattensCoeff() const {
return 4 * (lengthCoeff + widthCoeff + heightCoeff);
}
// resources required: ply = size^2 * 2 * (lengthCoeff * widthCoeff + widthC *
// heightC + heightC * lengthC)
double getPlyCoeff() const {
return 2 * (lengthCoeff * widthCoeff + widthCoeff * heightCoeff +
heightCoeff * lengthCoeff);
}
};
// The boxes used in this example.
const std::vector<Box> boxTypeArray = {
Box("Cube", 1, 1, 1, 20, 1), Box("Oblong", 1, 2, 1, 27.3, 1),
Box("Flat", 4, 4, 1, 90, 1), Box("Economy", 1, 2, 1, 10, 0.2)};
// The resource constraints used in this example.
const double maxSize = 2.0;
const int maxNumProducedPerBoxType = 6;
const double maxNrBattens = 200.0;
const double maxPly = 210.0;
const double maxTime = 35.0;
int main() {
try {
// Create a problem instance with verbose messages printed to Console
XpressProblem prob;
prob.callbacks.addMessageCallback(XpressProblem::console);
// The number of each of the type of boxes that should be produced
std::vector<Variable> numProduced =
prob.addVariables(boxTypeArray.size())
.withType(ColumnType::Integer)
.withName("numProduced_%d")
.withUB(maxNumProducedPerBoxType)
.toArray();
// The relative size (a multiplier of length/width/height) of each of the
// box types to produce
std::vector<Variable> size =
prob.addVariables(boxTypeArray.size())
.withType(ColumnType::Continuous) // This is the default value so
// not required to specify
.withName("size_%d")
.withUB(maxSize)
.toArray();
/* Resource Availabililty Constraints */
// Construct Expression for ply required for each type of box
std::vector<Expression> plyPerBoxType(boxTypeArray.size());
for (std::size_t i = 0; i < boxTypeArray.size(); i++) {
// plyPerBoxType = numProduced * size^2 * plyCoeff
plyPerBoxType[i] = mul(numProduced[i], pow(size[i], 2.0)) *
boxTypeArray[i].getPlyCoeff();
}
// Inspect the constructed Expression
std::cout << "Total ply: " << sum(plyPerBoxType).toString() << std::endl;
prob.addConstraint(sum(plyPerBoxType) <= maxPly);
/* Next, we construct a same type of resource constraint as above, but then
* for the total battens instead of ply. Except, instead of using sum and
* mul, we use scalarProduct.
*/
// First collect the BattensCoefficients into one vector. We do this using
// the std::transform function along with a lambda function from Box to
// double (similar to `map` function in Python if you are familiar)
std::vector<double> battensCoeffs(boxTypeArray.size());
std::transform(boxTypeArray.begin(), boxTypeArray.end(),
battensCoeffs.begin(),
[](Box box) { return box.getBattensCoeff(); });
// battensPerBox = numProduced * size * battensCoeff
prob.addConstraint(scalarProduct(numProduced, size, battensCoeffs) <=
maxNrBattens);
// Again a similar resource constraint as above, now for total time.
// We use a different way to use sum (now with a lambda function)
Expression totalTime =
sum(boxTypeArray.size(), [&](auto i) {
// timeNeededForBox = 1 + timeCoeff * 1.5^(ply/10)
Expression plyNeeded =
pow(size[i], 2.0) * boxTypeArray[i].getPlyCoeff();
Expression timeNeeded =
1 + mul(boxTypeArray[i].timeCoeff, pow(1.5, div(plyNeeded, 10)));
return numProduced[i] * timeNeeded;
});
// Inspect the constructed Expression
std::cout << "Total time: " << totalTime.toString() << std::endl;
prob.addConstraint(totalTime <= maxTime);
/* Construct the objective */
Expression totalProfit =
sum(boxTypeArray.size(), [&](auto i) {
// profit = numProduced * size^1.5 * profitCoeff
return numProduced[i] * pow(size[i], 1.5) *
boxTypeArray[i].profitCoeff;
});
// Inspect the constructed Expression
std::cout << "Total profit: " << totalProfit.toString() << std::endl;
// To make the objective linear, just maximize the objtransfercol and add
// non-linear constraint
Variable objtransfercol =
prob.addVariable(ColumnType::Continuous, "objTransferCol");
prob.setObjective(objtransfercol, xpress::ObjSense::Maximize);
// Add the objective transfer row: objtransfercol = totalProfit
prob.addConstraint(objtransfercol == totalProfit);
// Dump the problem to disk so that we can inspect it.
prob.writeProb("Boxes02.lp");
// By default we will solve to global optimality, uncomment for an MISLP
// solve to local optimality prob.setNLPSolver(XPRS_NLPSOLVER_LOCAL);
// Solve
prob.optimize();
// Check the solution status
if (prob.attributes.getSolStatus() != SolStatus::Optimal &&
prob.attributes.getSolStatus() != SolStatus::Feasible) {
std::ostringstream oss;
oss << prob.attributes
.getSolStatus(); // Convert xpress::SolStatus to String
throw std::runtime_error("Optimization failed with status " + oss.str());
}
// Get the solution and print it
std::vector<double> sol = prob.getSolution();
std::cout << std::endl << "*** Solution ***" << std::endl;
std::cout << "Objective: " << prob.attributes.getObjVal() << std::endl;
// Print out the variables
for (std::size_t i = 0; i < boxTypeArray.size(); ++i) {
if (numProduced[i].getValue(sol) > 0.0) {
std::cout << "Producing " << numProduced[i].getValue(sol) << " "
<< boxTypeArray[i].toString() << " boxes of size "
<< size[i].getValue(sol) << "." << std::endl;
}
}
return 0;
} catch (std::exception &e) {
std::cout << "Exception: " << e.what() << std::endl;
return -1;
}
}
|