# Create a few variables, then build a problem and save it to a file.
# Re-read that file into a new problem and solve it.
#
# (C) 1983-2025 Fair Isaac Corporation
import xpress as xp
m = xp.problem()
c1 = m.addVariable(name="C1", lb=-xp.infinity, ub=xp.infinity)
c2 = m.addVariable(name="C2", lb=-xp.infinity, ub=200)
c3 = m.addVariable(name="C3", vartype=xp.partiallyinteger, threshold=10)
c4 = m.addVariable(name="C4", vartype=xp.semicontinuous, threshold=3, ub=6)
c5 = m.addVariable(name="C5", vartype=xp.integer)
m.setObjective(c1 + c2)
m.addConstraint(c1**2 + c2**2 <= 6,
2 * c1 + 3 * c2 + c3 == 2,
-c3**2 + c4**2 + c5**2 <= 0,
c4 == 0.316227766016838 * c1,
c5 == 0.316227766016838 * c2)
m.writeProb("example0", "lp")
m2 = xp.problem()
m2.readProb("example0.lp", "")
m2.optimize()
print("objective value:", m2.attributes.objval)
print("solution:", m2.getSolution())
|
# Example to show how to retrieve the coefficient matrix from a
# problem.
#
# (C) 1983-2025 Fair Isaac Corporation
import xpress as xp
import scipy.sparse
p = xp.problem()
p.readProb('Data/prob1.lp')
# Obtain matrix representation of the coefficient matrix for problem.
beg, ind, coef = p.getRows(0, p.attributes.rows - 1)
# Create a Compressed Sparse Row (CSR) format matrix using the data
# from getRows.
A = scipy.sparse.csr_matrix((coef, ind, beg))
# Convert the CSR matrix to a NumPy array of arrays, so that each row
# is a (non-compressed) array.
M = A.toarray()
print(A)
print(M)
c = p.getObj(0, p.attributes.cols - 1)
b = p.getRHS(0, p.attributes.rows - 1)
print(b)
print(c)
|