Initializing help system before first use

Els - An economic lot-sizing problem solved by cut-and-branch and branch-and-cut heuristics


Type: Economic lot-sizing
Rating: 5 (difficult)
Description: The version 'ELS' of this example shows how to implement cut-and-branch (= cut generation at the root node of the MIP search) and 'ELSCut' implements a branch-and-cut (= cut generation at the MIP search tree nodes) algorithm using the cut manager.
File(s): ELS.cs, ELS.csproj, ELSCut.cs, ELSCut.csproj, ELSManagedCuts.cs, ELSManagedCuts.csproj


ELS.cs
// (c) 2023-2025 Fair Isaac Corporation

using System;
using Optimizer;
using Optimizer.Objects;
using static Optimizer.Objects.Utils;

namespace XpressExamples
{
    /// <summary>Economic lot sizing, ELS, problem</summary>
    /// <remarks>
    ///   Solved by adding (l,S)-inequalities in several rounds looping over
    ///   the root node.
    ///
    ///   ELS considers production planning over a horizon
    ///   of T periods. In period t, t=1,...,T, there is a
    ///   given demand DEMAND[t] that must be satisfied by
    ///   production prod[t] in period t and by inventory
    ///   carried over from previous periods. There is a
    ///   set-up up cost SETUPCOST[t] associated with
    ///   production in period t. The unit production cost
    ///   in period t is PRODCOST[t]. There is no inventory
    ///   or stock-holding cost.
    /// </remarks>
    class ELS
    {
        private static readonly double EPS = 1e-6;
        private static readonly int T = 6;                 /* Number of time periods */

        /* Data */
        private static readonly double[] DEMAND = { 1, 3, 5, 3, 4, 2 };  /* Demand per period */
        private static readonly double[] SETUPCOST = { 17, 16, 11, 6, 9, 6 };  /* Setup cost / period */
        private static readonly double[] PRODCOST = { 5, 3, 2, 1, 3, 1 };  /* Prod. cost / period */
        private static double[,] D;                       /* Total demand in periods t1 - t2 */

        /* Variables and constraints */
        private static Variable[] prod;                  /* Production in period t */
        private static Variable[] setup;                 /* Setup in period t */

        /***********************************************************************/
        private static void ModEls(XpressProblem p)
        {
            D = new double[T, T];
            for (int s = 0; s < T; s++)
                for (int t = 0; t < T; t++)
                    for (int k = s; k <= t; k++)
                        D[s, t] += DEMAND[k];

            // Variables
            prod = p.AddVariables(T)
                .WithType(ColumnType.Continuous)
                .WithName(t => $"prod{t + 1}")
                .ToArray();

            setup = p.AddVariables(T)
                .WithType(ColumnType.Binary)
                .WithName(t => $"setup{t + 1}")
                .ToArray();

            // Objective: Minimize total cost
            p.SetObjective(
                Sum(
                    ScalarProduct(setup, SETUPCOST),
                    ScalarProduct(prod, PRODCOST)
                ),
                Optimizer.ObjSense.Minimize
            );

            // Constraints

            // Production in period t must not exceed the total demand for the
            // remaining periods; if there is production during t then there
            // is a setup in t
            //  for all t in [0,T[
            //    prod[t] <= setup[t] * D[t][T-1]
            p.AddConstraints(T,
                    t => prod[t].Leq(setup[t] * D[t, T - 1]).SetName($"Production_{t}")
                    );

            // Production in periods 0 to t must satisfy the total demand
            // during this period of time
            //  for all t in [0,T[
            //    sum(s in [0,t+1[) prod[s] >= D[0][t]
            p.AddConstraints(T,
                    t => Sum(t + 1, t => prod[t]).Geq(D[0, t]).SetName($"Demand_{t}")
                    );
            p.WriteProb("ELS.lp", "l");
        }

        /**************************************************************************/
        /*  Cut generation loop at the top node:                                  */
        /*    solve the LP and save the basis                                     */
        /*    get the solution values                                             */
        /*    identify and set up violated constraints                            */
        /*    load the modified problem and load the saved basis                  */
        /**************************************************************************/
        private static void SolveEls(XpressProblem p)
        {
            // Output all messages.
            p.callbacks.AddMessageCallback(DefaultMessageListener.Console);
            /* Disable automatic cuts - we use our own */
            p.CutStrategy = (int)Optimizer.CutStrategy.None;
            /* Switch presolve off */
            p.Presolve = (int)Optimizer.Presolve.None;

            int ncut = 0, npass = 0, npcut = 0;
            long starttime = Environment.TickCount64;
            double[] sol;

            do
            {
                p.WriteProb("model" + npass + ".lp", "l");
                npass++;
                npcut = 0;
                // Solve the LP-problem
                p.LpOptimize();
                if (p.SolStatus != Optimizer.SolStatus.Optimal)
                    throw new Exception("failed to optimize with status " + p.SolStatus);
                // Get the solution values:
                sol = p.GetSolution();
                // Search for violated constraints:
                for (int l = 0; l < T; l++)
                {
                    double ds = 0.0;
                    for (int t = 0; t <= l; t++)
                    {
                        if (prod[t].GetValue(sol) < D[t, l] * setup[t].GetValue(sol) + EPS)
                        {
                            ds += prod[t].GetValue(sol);
                        }
                        else
                        {
                            ds += D[t, l] * setup[t].GetValue(sol);
                        }
                    }

                    /* Add the violated inequality: the minimum of the actual production
                       prod[t] and the maximum potential production D[t][l]*setup[t]
                       in periods 0 to l must at least equal the total demand in periods
                       0 to l.
                       sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l] */
                    if (ds < D[0, l] - EPS)
                    {
                        LinExpression cut = new LinTermMap(0);
                        for (int t = 0; t <= l; t++)
                        {
                            if (prod[t].GetValue(sol) < D[t, l] * setup[t].GetValue(sol) + EPS)
                                cut.AddTerm(prod[t]);
                            else
                                cut.AddTerm(setup[t] * D[t, l]);
                        }
                        p.AddConstraint((cut >= D[0, l]).SetName($"cut_{ncut + 1}"));
                        ncut++;
                        npcut++;
                    }
                }
                Console.WriteLine("Iteration {0:d}, {1:f2} sec, objective value: {2:f}, cuts added: {3:d} (total {4:d})",
                    npass,
                    (Environment.TickCount64 - starttime) / 1000.0,
                    p.ObjVal,
                    npcut,
                    ncut
                );

                if (npcut == 0)
                    Console.WriteLine("Optimal integer solution found:");

            } while (npcut > 0);

            // Print out the solution:
            for (int t = 0; t < T; t++)
            {
                Console.WriteLine(
                        "Period {0:d}: prod {1:f1} (demand: {2:f0}, cost: {3:f0}), setup {4:f0} (cost {5:f0})",
                        t + 1,
                        prod[t].GetValue(sol),
                        DEMAND[t],
                        PRODCOST[t],
                        setup[t].GetValue(sol),
                        SETUPCOST[t]
                );
            }
        }

        public static void Main(string[] args)
        {
            using (XpressProblem prob = new XpressProblem())
            {
                ModEls(prob);        // Model the problem
                SolveEls(prob);      // Solve the problem
            }
        }
    }
}

ELS.csproj
<?xml version="1.0" encoding="UTF-8" standalone="no"?><Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>

    <IsPackable>false</IsPackable>
    <XpressExampleFiles Condition="'$(XpressExampleFiles)'==''">../../../data</XpressExampleFiles>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="FICO.Xpress.XPRSdn" Version="46.1.1"/> <!-- Version 46.01.01 or later -->
  </ItemGroup>
  
</Project>

ELSCut.cs
// (c) 2023-2025 Fair Isaac Corporation

using System;
using Optimizer.Objects;
using Optimizer;
using static Optimizer.Objects.Utils;

namespace XpressExamples
{
    /// <summary>Economic lot sizing, ELS, problem</summary>
    /// <remarks>
    ///   Solved by adding (l,S)-inequalities in a branch-and-cut heuristic
    ///   (using the cut manager).
    ///
    ///   ELS considers production planning over a horizon
    ///   of T periods. In period t, t=1,...,T, there is a
    ///   given demand DEMAND[t] that must be satisfied by
    ///   production prod[t] in period t and by inventory
    ///   carried over from previous periods. There is a
    ///   set-up up cost SETUPCOST[t] associated with
    ///   production in period t. The unit production cost
    ///   in period t is PRODCOST[t]. There is no inventory
    ///   or stock-holding cost.
    ///
    ///   <b>This model cannot be run with a Community Licence</b>
    /// </remarks>
    class ELSCut
    {
        private static readonly double EPS = 1e-6;
        private static readonly int T = 6;                 /* Number of time periods */

        /* Data */
        private static readonly double[] DEMAND = { 1, 3, 5, 3, 4, 2 };  /* Demand per period */
        private static readonly double[] SETUPCOST = { 17, 16, 11, 6, 9, 6 };  /* Setup cost / period */
        private static readonly double[] PRODCOST = { 5, 3, 2, 1, 3, 1 };  /* Prod. cost / period */
        private static readonly double[,] D = new double[T, T];              /* Total demand in periods t1 - t2 */

        /* Variables and constraints */
        private static Variable[] prod;                  /* Production in period t */
        private static Variable[] setup;                 /* Setup in period t */

        private static void PrintProblemStatus(XpressProblem prob)
        {
            Console.WriteLine("Problem status:");
            Console.WriteLine($"\tSolve status: {prob.SolveStatus}");
            Console.WriteLine($"\tLP status:    {prob.LPStatus}");
            Console.WriteLine($"\tMIP status:   {prob.MIPStatus}");
            Console.WriteLine($"\tSol status:   {prob.SolStatus}");
        }

        /// <summary>Cut generation algorithm (implemented as optnode callback).</summary>
        /// <remarks>
        ///   - get the solution values
        ///   - identify and set up violated constraints
        ///   - add cuts to the problem
        /// </remarks>
        private static int OptNode(XpressProblem p)
        {
            double[] sol, slack, duals, djs;
            int ncut = 0;
            // Add cut only to optimal relaxations
            if (p.LPStatus != Optimizer.LPStatus.Optimal)
            {
                return 0;
            }

            sol = p.GetCallbackSolution();
            slack = p.GetCallbackSlacks();
            duals = p.GetCallbackDuals();
            djs = p.GetCallbackRedCosts();
            // Search for violated constraints:
            for (int l = 0; l < T; l++)
            {
                double ds = 0.0;
                for (int t = 0; t <= l; t++)
                {
                    if (prod[t].GetValue(sol) < D[t, l] * setup[t].GetValue(sol) + EPS)
                    {
                        ds += prod[t].GetValue(sol);
                    }
                    else
                    {
                        ds += D[t, l] * setup[t].GetValue(sol);
                    }
                }

                // Add the violated inequality: the minimum of the actual production
                // prod[t] and the maximum potential production D[t][l]*setup[t]
                // in periods 0 to l must at least equal the total demand in periods
                // 0 to l.
                // sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l] */
                if (ds < D[0, l] - EPS)
                {
                    LinExpression cut = new LinTermMap(0);
                    for (int t = 0; t <= l; t++)
                    {
                        if (prod[t].GetValue(sol) < D[t, l] * setup[t].GetValue(sol) + EPS)
                        {
                            cut.AddTerm(prod[t]);
                        }
                        else
                        {
                            cut.AddTerm(setup[t] * D[t, l]);
                        }
                    }
                    p.AddCut(0, cut >= D[0, 1]);
                    ncut++;
                }
            }

            if (ncut > 0)
            {
                Console.WriteLine($"Cuts added: {ncut} (depth {p.NodeDepth}, node {p.Nodes})");
            }
            return 0;
        }


        /***********************************************************************/
        private static void ModEls(XpressProblem p)
        {
            for (int s = 0; s < T; s++)
                for (int t = 0; t < T; t++)
                    for (int k = s; k <= t; k++)
                        D[s, t] += DEMAND[k];

            // Variables
            prod = p.AddVariables(T)
                .WithType(ColumnType.Continuous)
                .WithName(t => $"prod{t + 1}")
                .ToArray();

            setup = p.AddVariables(T)
                .WithType(ColumnType.Binary)
                .WithName(t => $"setup{t + 1}")
                .ToArray();

            // Objective: Minimize total cost
            p.SetObjective(
                Sum(
                    ScalarProduct(setup, SETUPCOST),
                    ScalarProduct(prod, PRODCOST)
                ),
                Optimizer.ObjSense.Minimize
            );

            // Constraints

            // Production in period t must not exceed the total demand for the
            // remaining periods; if there is production during t then there
            // is a setup in t
            //  for all t in [0,T[
            //    prod[t] <= setup[t] * D[t][T-1]
            p.AddConstraints(T,
                    t => prod[t].Leq(setup[t] * D[t, T - 1]).SetName($"Production_{t}")
                    );

            // Production in periods 0 to t must satisfy the total demand
            // during this period of time
            //  for all t in [0,T[
            //    sum(s in [0,t+1[) prod[s] >= D[0][t]
            p.AddConstraints(T,
                    t => Sum(t + 1, t => prod[t]).Geq(D[0, t]).SetName($"Demand_{t}")
                    );
            p.WriteProb("ELSCut.lp", "l");
        }

        /// <summary>Solve the model.</summary>
        /// <remarks>
        ///   Cuts are added dynamically with the optnode callback.
		/// </remarks>
        /// <param name='p'>The problem to solve.</param>
        private static void SolveEls(XpressProblem p)
        {
            // Output all messages.
            p.callbacks.AddMessageCallback(DefaultMessageListener.Console);
            p.LPLog = 0;
            p.MIPLog = 3;
            // Disable automatic cuts - we use our own
            p.CutStrategy = (int)Optimizer.CutStrategy.None;
            // Switch presolve off
            p.Presolve = (int)Optimizer.Presolve.None;
            p.MIPPresolve = 0;

            p.callbacks.AddOptnodeCallback(OptNode);

            /* Solve the MIP */
            p.MipOptimize();
            if (p.SolStatus != Optimizer.SolStatus.Optimal)
                throw new Exception("optimization failed with status " + p.SolStatus);
            /* Get the solution values: */
            double[] sol = p.GetSolution();

            /* Print out the solution: */
            for (int t = 0; t < T; t++)
            {
                Console.WriteLine(
                        "Period {0:%d}: prod {1:f1} (demand: {2:f0}, cost: {3:f0}), setup {4:f0} (cost {5:f0})",
                        t + 1,
                        prod[t].GetValue(sol),
                        DEMAND[t],
                        PRODCOST[t],
                        setup[t].GetValue(sol),
                        SETUPCOST[t]
                );
            }
            PrintProblemStatus(p);
        }

        public static void Main(string[] args)
        {
            using (XpressProblem prob = new XpressProblem())
            {
                ModEls(prob);        // Model the problem
                SolveEls(prob);      // Solve the problem
            }
        }
    }
}

ELSCut.csproj
<?xml version="1.0" encoding="UTF-8" standalone="no"?><Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>

    <IsPackable>false</IsPackable>
    <XpressExampleFiles Condition="'$(XpressExampleFiles)'==''">../../../data</XpressExampleFiles>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="FICO.Xpress.XPRSdn" Version="46.1.1"/> <!-- Version 46.01.01 or later -->
  </ItemGroup>
  
</Project>

ELSManagedCuts.cs
// (c) 2025-2025 Fair Isaac Corporation

using System;
using Optimizer;
using Optimizer.Objects;
using static Optimizer.Objects.Utils;

namespace XpressExamples
{
    /// <summary>Demonstrates how to implement cutting planes as part of a MIP branch-and-bound search using the cutround callback.</summary>
    /// <remarks>
    /// Cuts are added as user cuts using XpressProblem.AddManagedCut().
    ///
    /// Economic lot sizing problem. Solved by adding (l,S)-inequalities
    /// in a branch-and-cut heuristic (using the cutround callback).
    ///
    /// ELS considers production planning over a horizon of T periods. In period t,
    /// t=1,...,T, there is a given demand DEMAND[p,t] that must be satisfied by
    /// production produce[p,t] in period t and by inventory carried over
    /// from previous periods.
    /// There is a set-up cost SETUPCOST[t] associated with production in
    /// period t and the total production capacity per period is limited. The unit
    /// production cost in period t is PRODCOST[p,t]. There is no
    /// inventory or stock-holding cost.
    ///
    /// A well-known class of valid inequalities for ELS are the
    /// (l,S)-inequalities.  Let D(p,q) denote the demand in periods p
    /// to q and y(t) be a binary variable indicating whether there is any
    /// production in period t.  For each period l and each subset of periods S
    /// of 1 to l, the (l,S)-inequality is
    /// <pre>
    ///      sum (t=1:l | t in S) x(t) + sum (t=1:l | t not in S) D(t,l)/// y(t)
    ///          &gt;= D(1,l)
    /// </pre>
    ///
    /// It says that actual production x(t) in periods included S plus maximum
    /// potential production D(t,l)*y(t) in the remaining periods (those not in
    /// S) must at least equal total demand in periods 1 to l.  Note that in
    /// period t at most D(t,l) production is required to meet demand up to
    /// period l.
    ///
    /// Based on the observation that
    /// <pre>
    ///      sum (t=1:l | t in S) x(t) + sum (t=1:l | t not in S) D(t,l)/// y(t)
    ///          &gt;= sum (t=1:l) min(x(t), D(t,l)/// y(t))
    ///          &gt;= D(1,l)
    /// </pre>
    /// it is easy to develop a separation algorithm and thus a cutting plane
    /// algorithm based on these (l,S)-inequalities.
    /// </remarks>
    class ELSManagedCuts
    {
        /** Tolerance for satisfiability. */
        private const double EPS = 1e-6;

        /** Number of time periods. */
        private const int DIM_TIMES = 15;
        /** Number of products to produce. */
        private const int DIM_PRODUCTS = 4;

        /** Demand per product (first dim) and time period (second dim). */
        private static readonly int[,] DEMAND = new int[,]{
            { 2, 3, 5, 3, 4, 2, 5, 4, 1, 3, 4, 2, 3, 5, 2},
            {3, 1, 2, 3, 5, 3, 1, 2, 3, 3, 4, 5, 1, 4, 1},
            {3, 5, 2, 1, 2, 1, 3, 3, 5, 2, 2, 1, 3, 2, 3},
            {2, 2, 1, 3, 2, 1, 2, 2, 3, 3, 2, 2, 3, 1, 2}
        };
        /** Setup cost. */
        private static readonly double[] SETUPCOST = new double[]{
            17, 14, 11, 6, 9, 6, 15, 10, 8, 7, 12, 9, 10, 8, 12
        };
        /** Production cost per product (first dim) and time period (second dim). */
        private static readonly double[,] PRODCOST = new double[,]{
            {5, 3, 2, 1, 3, 1, 4, 3, 2, 2, 3, 1, 2, 3, 2},
            {1, 4, 2, 3, 1, 3, 1, 2, 3, 3, 3, 4, 4, 2, 2},
            {3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 1, 1, 3, 3, 3},
            {2, 2, 2, 3, 3, 3, 4, 4, 4, 3, 3, 2, 2, 2, 3}
        };
        /** Capacity. */
        private static int[] CAP = new int[]{
            12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
        };

        /** Cut round callback for separating our cutting planes. */
        class Callback
        {
            private Variable[,] produce;
            private Variable[,] setup;
            private double[,,] sumDemand;
            public Callback(Variable[,] produce, Variable[,] setup, double[,,] sumDemand)
            {
                this.produce = produce;
                this.setup = setup;
                this.sumDemand = sumDemand;
            }
            public void CutRound(XpressProblem prob, int ifxpresscuts, ref int action)
            {
                // Apply only one round of cutting on each node.
                // Because the CutRound callback is fired *before* a round of
                // cutting, the CUTROUNDS attribute will start from 0 on the first
                // invocation of the callback.
                if (prob.CutRounds >= 1)
                    return;

                // Get the solution vector.
                // Xpress will only fire the CutRound callback when a solution is
                // available, so there is no need to check whether a solution is
                // available.
                double[] sol = prob.GetCallbackSolution();

                // Search for violated constraints : the minimum of the actual
                // production produce[p,t] and the maximum potential production
                // D[p,t,l]*setup[p,t] in periods 0 to l must at least equal
                // the total demand in periods 0 to l.
                //    sum(t=1:l) min(prod[p,t], D[p,t,l]*setup[p,t]) >= D[p,0,l]
                int nCutsAdded = 0;
                for (int p = 0; p < DIM_PRODUCTS; p++)
                {
                    for (int l = 0; l < DIM_TIMES; l++)
                    {
                        double sum = 0.0;
                        for (int t = 0; t <= l; t++)
                        {
                            if (produce[p, t].GetValue(sol) < sumDemand[p, t, l] * setup[p, t].GetValue(sol) + EPS)
                            {
                                sum += produce[p, t].GetValue(sol);
                            }
                            else
                            {
                                sum += sumDemand[p, t, l] * setup[p, t].GetValue(sol);
                            }
                        }
                        if (sum < sumDemand[p, 0, l] - EPS)
                        {
                            // Create the violated cut.
                            LinExpression cut = LinExpression.Create();
                            for (int t = 0; t <= l; t++)
                            {
                                if (produce[p, t].GetValue(sol) < sumDemand[p, t, l] * setup[p, t].GetValue(sol))
                                {
                                    cut.AddTerm(1.0, produce[p, t]);
                                }
                                else
                                {
                                    cut.AddTerm(sumDemand[p, t, l], setup[p, t]);
                                }
                            }
                            // Give the cut to Xpress to manage.
                            // It will automatically be presolved.
                            prob.AddManagedCut(true, cut >= sumDemand[p, 0, l]);
                            ++nCutsAdded;

                            // If we modified the problem in the callback, Xpress
                            // will automatically trigger another roound of cuts,
                            // so there is no need to set the action return
                            // argument.
                        }
                    }
                }
                if (nCutsAdded > 0)
                {
                    Console.WriteLine("Cuts added: {0}", nCutsAdded);
                }
            }
        }

        public static void Main(string[] args)
        {
            using (XpressProblem prob = new XpressProblem())
            {
                prob.callbacks.AddMessageCallback(DefaultMessageListener.Console);

                // Create an economic lot sizing problem.
                // Calculate demand D(p, s, t) as the demand for product p from
                // time s to time t(inclusive).
                double[,,] sumDemand = new double[DIM_PRODUCTS, DIM_TIMES, DIM_TIMES];
                for (int p = 0; p < DIM_PRODUCTS; p++)
                {
                    for (int s = 0; s < DIM_TIMES; s++)
                    {
                        double thisSumDemand = 0.0;
                        for (int t = s; t < DIM_TIMES; t++)
                        {
                            thisSumDemand += DEMAND[p, t];
                            sumDemand[p, s, t] = thisSumDemand;
                        }
                    }
                }

                Variable[,] produce = prob.AddVariables(DIM_PRODUCTS, DIM_TIMES)
                    .WithName((p, t) => "produce(" + p + "," + t + ")")
                    .ToArray();
                Variable[,] setup = prob.AddVariables(DIM_PRODUCTS, DIM_TIMES)
                    .WithType(ColumnType.Binary)
                    .WithName((p, t) => "setup(" + p + "," + t + ")")
                    .ToArray();

                // Add the objective function :
                // MinCost:= sum(t in TIMES) (SETUPCOST(t) * sum(p in PRODUCTS) setup(p,t) +
                //           sum(p in PRODUCTS) PRODCOST(p, t) *produce(p, t) )
                prob.SetObjective(Sum(DIM_TIMES, DIM_PRODUCTS,
                                      (t, p) => SETUPCOST[t] * setup[p, t] + PRODCOST[p, t] * produce[p, t]));

                // Add constraints.
                // Production in periods 0 to t must satisfy the total demand
                // during this period of time, for all t in [0,T[
                //    forall(p in PRODUCTS, t in TIMES)
                //      Dem(t) : = sum(s in 1..t) produce(p,s) >= sum(s in 1..t) DEMAND(s)
                prob.AddConstraints(DIM_PRODUCTS, DIM_TIMES,
                                    (p, t) => Sum(t + 1, s => produce[p, s]) >= sumDemand[p, 0, t]);

                // If there is production during t then there is a setup in t :
                //    forall(p in PRODUCTS, t in TIMES)
                //       ProdSetup(t) : = produce(t) <= D(t,TIMES) * setup(t)
                for (int p = 0; p < DIM_PRODUCTS; ++p)
                {
                    for (int t = DIM_TIMES - 1; t >= 0; --t)
                    {
                        prob.AddConstraint(produce[p, t] <= sumDemand[p, t, DIM_TIMES - 1] * setup[p, t]);
                    }
                }

                // Capacity limits :
                //    forall(t in TIMES) Capacity(t) : = sum(p in PRODUCTS) produce(p, t) <= CAP(t)
                prob.AddConstraints(DIM_TIMES,
                                    t => Sum(DIM_PRODUCTS, p => produce[p, t]) <= CAP[t]);

                // Add a CutRound callback for separating our cuts.
                prob.callbacks.AddCutRoundCallback(new Callback(produce, setup, sumDemand).CutRound);

                prob.WriteProb("elsmanagedcuts.lp");

                prob.Optimize();

                if (prob.SolveStatus == SolveStatus.Completed && prob.SolStatus == SolStatus.Optimal)
                {
                    Console.WriteLine("Solved problem to optimality.");
                }
                else
                {
                    Console.WriteLine("Failed to solve problem with solvestatus {0} and solstatus {1}",
                                      prob.SolveStatus,
                                      prob.SolStatus);
                }
            }
        }
    }
}

ELSManagedCuts.csproj
<?xml version="1.0" encoding="UTF-8" standalone="no"?><Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>

    <IsPackable>false</IsPackable>
    <XpressExampleFiles Condition="'$(XpressExampleFiles)'==''">../../../data</XpressExampleFiles>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="FICO.Xpress.XPRSdn" Version="46.1.1"/> <!-- Version 46.01.01 or later -->
  </ItemGroup>

</Project>

© 2001-2025 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.