probe_settle_disjunction
probe_settle_disjunction |
Purpose
Creates a probe_settle_disjunction branching scheme that resolves the status of all the disjunctions passed in argument. The branching consists in choosing one branch of the disjunction and posting the constraint stated by this branch. The branches are tested from left to right

Synopsis
function probe_settle_disjunction(disjunctions:set of cpctr, probeLevel:integer) : cpbranching
function probe_settle_disjunction(disj_selector:string, disjunctions:set of cpctr, probeLevel:integer) : cpbranching
function probe_settle_disjunction(disj_selector:string, disjunctions:array(range) of cpctr, probeLevel:integer) : cpbranching
function probe_settle_disjunction(disjunctions:array(range) of cpctr, probeLevel:integer) : cpbranching
function probe_settle_disjunction(disj_selector:string, probeLevel:integer) : cpbranching
function probe_settle_disjunction(probeLevel:integer) : cpbranching
Arguments
disj_selector
|
the disjunction selector name (pre-defined constant or user-defined function name)
|
disjunctions
|
the set or array of disjunctions
|
probeLevel
|
maximal probing level
|
Return value
The resulting probe_settle_disjunction branching scheme
Example
The following example shows how to use the probe_settle_disjunction branching scheme to solve a small disjunctive scheduling problem:The problem consists of finding a schedule for some tasks on one machine. The machine can process only one task at the time and the goal is to minimize the total weighted tardiness of the schedule. Note that the result may be (and will be in this case) suboptimal as the search tree is not fully explored.
model "Disjunctive scheduling with probe_settle_disjunction" uses "kalis" declarations NBTASKS = 5 TASKS = 1..NBTASKS ! Set of tasks DUR: array(TASKS) of integer ! Task durations DUE: array(TASKS) of integer ! Due dates WEIGHT: array(TASKS) of integer ! Weights of tasks start: array(TASKS) of cpvar ! Start times tmp: array(TASKS) of cpvar ! Aux. variable tardiness: array(TASKS) of cpvar ! Tardiness twt: cpvar ! Objective variable zeroVar: cpvar ! 0-valued variable Strategy: array(range) of cpbranching ! Branching strategy Disj: set of cpctr ! Disjunctions end-declarations DUR :: [21,53,95,55,34] DUE :: [66,101,232,125,150] WEIGHT :: [1,1,1,1,1] setname(twt, "Total weighted tardiness") zeroVar = 0 setname(zeroVar, "zeroVar") forall(t in TASKS) do start(t) >= 0 start(t).name:= "Start("+t+")" tmp(t) = start(t) + DUR(t) - DUE(t) tardiness(t).name:= "Tard("+t+")" tardiness(t) = maximum({tmp(t),zeroVar}) end-do twt = sum(t in TASKS) (WEIGHT(t) * tardiness(t)) ! Create the disjunctive constraints forall(t in 1..NBTASKS-1, s in t+1..NBTASKS) (start(t) + DUR(t) <= start(s)) or (start(s) + DUR(s) <= start(t)) ! Define the branching strategy Strategy(1):= probe_settle_disjunction(1) Strategy(2):= split_domain(KALIS_LARGEST_MIN,KALIS_MIN_TO_MAX) cp_set_branching(Strategy) ! Solve the problem if not(cp_minimize(twt)) then writeln("problem is inconsistent") exit(0) end-if forall (t in TASKS) writeln("[", start(t).sol, "==>", start(t).sol + DUR(t), "]:\t ", tardiness(t).sol, " (", tmp(t).sol, ")") writeln("Total weighted tardiness: ", twt.sol) end-model
Related topics