Data Model
Topics covered in this chapter:
All entities in the data model must be declared with the help of type hints for the class attributes.
Parameters
Parameters are scalar values that can be used to configure an Insight scenario. When parameters are declared, their name, data type, and default value must be specified. The data type can be omitted if the default value is specified and vice versa. Parameter values are automatically passed from the scenario to Insight app such that their value from the scenario is available in all execution modes. In particular, the parameter values are available in the standard load mode. Within the Insight execution mode, parameters should be treated as runtime constants. They can only be changed in the Insight user interface and any changes in an execution mode will not be transferred back to the Insight server, i.e., the scenario parameters remain unchanged. Some examples include:
import xpressinsight as xi @xi.AppConfig(name="My First Insight Python App", version=xi.AppVersion(0, 1, 2)) class MyApp(xi.AppBase): # Examples where data type is inferred from the default value. # Parameter "P" of type "xi.integer" with default value 100. P: xi.Param(100) # Parameter "DEBUG" of type "xi.boolean" with default value False. DEBUG: xi.Param(False) # Parameter "PI" of type "xi.real" with default value 3.14. PI: xi.Param(3.14) # Parameter "STR_PARAM" of type xi.string with default value 'My String Param'. STR_PARAM: xi.Param('My String Param') # Examples where data type is explicitly given. BOOL_PARAM: xi.Param(dtype=xi.boolean) # Default value False. INT_PARAM: xi.Param(dtype=xi.integer) # Default value 0. REAL_PARAM: xi.Param(dtype=xi.real) # Default value 0.0. STRING_PARAM: xi.Param(dtype=xi.string) # Default value "". # TODO: Define execution modes here.
Parameters are typically read-only.
Scalars
Scalar values are used to represent single-valued entities in the data model. Like parameters, when scalars are declared, their name, data type, and default value must be specified. The data type can be omitted if the default value is specified and vice versa. Scalars can either be input values or result values. By default, scalars are treated as input values. Some examples include:
import xpressinsight as xi @xi.AppConfig(name="My First Insight Python App", version=xi.AppVersion(0, 1, 2)) class MyApp(xi.AppBase): # Examples where data type is inferred from the default value. # Input scalar "NumFactory" of type "xi.integer" with default value 100. NumFactory: xi.Scalar(100, manage=xi.Manage.INPUT) # Result scalar "IsOn" of type "xi.boolean" with default value True. IsOn: xi.Scalar(True, manage=xi.Manage.RESULT) # Examples where data type is explicitly given. StringScalar: xi.Scalar(dtype=xi.string) # Input scalar with default value "". RealScalar: xi.Scalar(dtype=xi.real) # Input scalar with default value 0.0. # TODO: Define execution modes here.
General Notes
In the data model, entities may be assigned an alias, which allows to specify a more "user-friendly" label for the entity which will be used in the Insight UI. For example:
MyInteger: xi.Scalar(dtype=xi.integer, alias='My Integer')
An entity MyInteger is declared, but will appear as My Integer in the Insight app UI such as table column headers, entity explorer, etc..
Data Model Classes
Declare the entity to be (or to contain) boolean (True or False) values. If not specified, the default value is False.
|
|
Represent a single column within a DataFrame entity.
|
|
Initializes Column.
|
|
Represent a DataFrame entity.
|
|
Initializes DataFrame.
|
|
Possible values of whether the UI should hide an entity where appropriate.
|
|
Represents an index entity. To be used in conjunction with xpressinsight.Series or xpressinsight.DataFrame objects.
|
|
The constructor.
|
|
Declare the entity to be (or to contain) integer (whole number) values. Each value must fit into a signed 32-bit integer. If not specified, the default value is 0.
|
|
How and whether Insight handles an entity.
|
|
Represents a parameter entity. Parameters can be used to configure an Xpress Insight app. When parameters are declared, their name, data type, and default value must be specified. Parameters are typically read-only.
|
|
Initializes Param with the data type or a default value (in which case data type is inferred).
|
|
Declare the entity to be (or to contain) floating-point (whole number) values. If not specified, the default value is 0.0.
|
|
Represents a scalar entity.
|
|
The constructor.
|
|
Represent a Series entity, a declaration of a pandas Series datastructure. Every series must has at least one index.
|
|
Initializes Series.
|
|
Declare the entity to be (or to contain) string (UTF-8 encoded) values. The length (in bytes) of a string scalar (Scalar or Param) must not exceed 1,000,000 bytes. The length of a string in a container (Index, Series, or DataFrame) must not exceed 250,000 characters. A string must not contain the null character. If not specified, the default value of a string scalar is the empty string "".
|
xpressinsight.boolean |
>>> my_bool: xi.Scalar(dtype=xi.boolean) ... my_bool: xi.Scalar(False) ... my_bool: xi.Scalar(True)
xpressinsight.integer |
>>> my_int: xi.Scalar(dtype=xi.integer) ... my_int: xi.Scalar(0) ... my_int: xi.Scalar(100) ... my_int: xi.Scalar(-10)
xpressinsight.real |
>>> my_real: xi.Scalar(dtype=xi.real) >>> my_real: xi.Scalar(100.0) >>> my_real: xi.Scalar(123.456)
xpressinsight.string |
>>> my_string: xi.Scalar(dtype=xi.string) ... my_string: xi.Scalar("Hello World!")
xpressinsight.Scalar |
>>> @xi.AppConfig(name="My First Insight Python App", ... version=xi.AppVersion(0, 1, 2)) ... class MyApp(xi.AppBase): ... ... # Examples where data type is inferred from default value ... # Scalar "NumFactory" of type "xi.integer"; default value 10 ... NumFactory: xi.Scalar(10) ... # Scalar "IsOn" of type "xi.boolean"; default value True ... IsOn: xi.Scalar(True) ... ... # Examples where data type is explicitly given. ... RealScalar: xi.Scalar(dtype=xi.real) # default value 0.0 ... StringScalar: xi.Scalar(dtype=xi.string) # default value ""
xpressinsight.Scalar.__init__ |
__init__(self, default: Union[str, bool, int, float] = None, dtype: Type[xpressinsight.BasicType] = None, alias: str = '', format: str = '', hidden: xpressinsight.Hidden = Hidden.FALSE, manage: xpressinsight.Manage = Manage.INPUT, read_only: bool = False, transform_labels_entity: str = '', update_after_execution: bool = False)
default
|
The default value.
|
dtype
|
The data-type.
|
alias
|
Used to provide an alternative name for an entity in the UI. The value is used in place of the entity name where appropriate in the UI.
|
format
|
The formatting string used for displaying numeric values.
|
hidden
|
Indicates whether the UI should hide the entity where appropriate.
|
manage
|
How and whether Insight handles an entity. Defines how the system manages the entity data.
|
read_only
|
Whether an entity is readonly. Specifies that the value(s) of the entity cannot be modified. See also
hidden.
|
transform_labels_entity
|
An entity in the schema to be used as a labels entity. The value is the name of the entity. The type of the index set of the labels entity much match the data type of this entity. The data type of the labels entity can be any primitive type.
|
update_after_execution
|
Whether the value of the entity in the scenario is updated with the value of the corresponding model entity at the end of the scenario execution. If
True the value of the entity is updated to correspond with the model entity after execution.
|
xpressinsight.Param |
>>> @xi.AppConfig(name="My First Insight Python App", ... version=xi.AppVersion(0, 1, 2)) ... class MyApp(xi.AppBase): ... ... # examples where data type is inferred from the default value ... # Param "P" of type "xi.integer" with default value 100 ... P: xi.Param(100) ... # Param "DEBUG" of type "xi.boolean" with default value False ... DEBUG: xi.Param(False) ... # Param "PI" of type "xi.real" with default value 3.14 ... PI: xi.Param(3.14) ... # Param "STR_PARAM" of type xi.string with a default value ... STR_PARAM: xi.Param('My String Param') ... ... # examples where data type is explicitly given ... BOOL_PARAM: xi.Param(dtype=xi.boolean) # default value False ... INT_PARAM: xi.Param(dtype=xi.integer) # default value 0 ... REAL_PARAM: xi.Param(dtype=xi.real) # default value 0.0 ... STRING_PARAM: xi.Param(dtype=xi.string) # default value ""
xpressinsight.Param.__init__ |
__init__(self, default: Union[str, int, bool, float] = None, dtype: Type[xpressinsight.BasicType] = None)
default: Union[str, int, bool, float]
|
The default value.
|
dtype: BASIC_TYPE
|
The data type of the parameter.
|
xpressinsight.Index |
>>> Indices: xi.Index(dtype=xi.integer, alias='Array Indices')
xpressinsight.Index.__init__ |
__init__(self, dtype: Type[xpressinsight.BasicType], alias: str = '', format: str = '', hidden: xpressinsight.Hidden = Hidden.FALSE, manage: xpressinsight.Manage = Manage.INPUT, read_only: bool = False, transform_labels_entity: str = '', update_after_execution: bool = False)
dtype
|
The data-type.
|
alias
|
Used to provide an alternative name for an entity in the UI. The value is used in place of the entity name where appropriate in the UI.
|
format
|
The formatting string used for displaying numeric values.
|
hidden
|
Indicates whether the UI should hide the entity where appropriate.
|
manage
|
How and whether Insight handles an entity. Defines how the system manages the entity data.
|
read_only
|
Whether an entity is readonly. Specifies that the value(s) of the entity cannot be modified. See also
hidden.
|
transform_labels_entity
|
An entity in the schema to be used as a labels entity. The value is the name of the entity. The type of the index set of the labels entity much match the data type of this entity. The data type of the labels entity can be any primitive type.
|
update_after_execution
|
Whether the value of the entity in the scenario is updated with the value of the corresponding model entity at the end of the scenario execution. If
True the value of the entity is updated to correspond with the model entity after execution.
|
xpressinsight.Series |
>>> Indices: xi.Index(...) # previous declaration ... Result: xi.Series(index=['Indices'], dtype=xi.real, ... manage=xi.Manage.RESULT, alias='Result Array')
xpressinsight.Series.__init__ |
__init__(self, index: Union[str, List[str]], dtype: Type[xpressinsight.BasicType], alias: str = '', format: str = '', hidden: xpressinsight.Hidden = Hidden.FALSE, manage: xpressinsight.Manage = Manage.INPUT, read_only: bool = False, transform_labels_entity: str = '', update_after_execution: bool = False)
index
|
The index to use.
|
dtype
|
The data-type.
|
alias
|
Used to provide an alternative name for an entity in the UI. The value is used in place of the entity name where appropriate in the UI.
|
format
|
The formatting string used for displaying numeric values.
|
hidden
|
Indicates whether the UI should hide the entity where appropriate.
|
manage
|
How and whether Insight handles an entity. Defines how the system manages the entity data.
|
read_only
|
Whether an entity is readonly. Specifies that the value(s) of the entity cannot be modified. See also
hidden.
|
transform_labels_entity
|
An entity in the schema to be used as a labels entity. The value is the name of the entity. The type of the index set of the labels entity much match the data type of this entity. The data type of the labels entity can be any primitive type.
|
update_after_execution
|
Whether the value of the entity in the scenario is updated with the value of the corresponding model entity at the end of the scenario execution. If
True the value of the entity is updated to correspond with the model entity after execution.
|
xpressinsight.Column |
>>> xi.Column("IntCol", dtype=xi.integer, alias="Input Integer Column")
xpressinsight.Column.__init__ |
__init__(self, name: str, dtype: Type[xpressinsight.BasicType], alias: str = '', format: str = '', hidden: xpressinsight.Hidden = Hidden.FALSE, manage: xpressinsight.Manage = Manage.INPUT, read_only: bool = False, transform_labels_entity: str = '', update_after_execution: bool = False)
name
|
The name of the column.
|
dtype
|
The data-type.
|
alias
|
Used to provide an alternative name for an entity in the UI. The value is used in place of the entity name where appropriate in the UI.
|
format
|
The formatting string used for displaying numeric values.
|
hidden
|
Indicates whether the UI should hide the entity where appropriate.
|
manage
|
How and whether Insight handles an entity. Defines how the system manages the entity data.
|
read_only
|
Whether an entity is readonly. Specifies that the value(s) of the entity cannot be modified. See also
hidden.
|
transform_labels_entity
|
An entity in the schema to be used as a labels entity. The value is the name of the entity. The type of the index set of the labels entity much match the data type of this entity. The data type of the labels entity can be any primitive type.
|
update_after_execution
|
Whether the value of the entity in the scenario is updated with the value of the corresponding model entity at the end of the scenario execution. If
True the value of the entity is updated to correspond with the model entity after execution.
|
xpressinsight.DataFrame |
>>> MixedTable: xi.DataFrame(index='Years', columns=[ ... xi.Column("IntCol", dtype=xi.integer, ... alias="Input Integer Column"), ... xi.Column("StrCol", dtype=xi.string, ... alias="Input String Column", ... update_after_execution=True), ... xi.Column("ResultCol", dtype=xi.real, ... alias="Result Real Column", ... manage=xi.Manage.RESULT) ... ])
xpressinsight.DataFrame.__init__ |
__init__(self, index: Union[str, List[str]], columns: Union[xpressinsight.Column, List[xpressinsight.Column]])
index
|
The index to use.
|
columns
|
The columns which make up this data-frame.
|
xpressinsight.Manage |
class xi.Manage(Enum)
xi.Manage.INPUT
|
Included in the scenario input data.
|
xi.Manage.RESULT
|
Included in the scenario results data.
|
>>> MyInteger: xi.Scalar(dtype=xi.integer, ... alias='My Integer', ... manage=xi.Manage.INPUT)
xpressinsight.Hidden |
class xi.Hidden(Enum)
xi.Hidden.ALWAYS
|
Indicates that the UI should hide the entity always.
|
xi.Hidden.TRUE
|
Indicates that the UI should hide the entity where appropriate.
|
xi.Hidden.FALSE
|
Indicates that the UI should show the entity where appropriate.
|
>>> MyInteger: xi.Scalar(dtype=xi.integer, ... alias='My Integer', ... hidden=xi.Hidden.ALWAYS)
© 2001-2021 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.