XpressProblem
- java.lang.Object
-  
  - com.dashoptimization.XPRSobject
-  
    - com.dashoptimization.XPRSprob
-  
      - com.dashoptimization.objects.XpressProblem
 
 
 
-  
   - All Implemented Interfaces:
- 
     java.lang.AutoCloseable
 
 public class XpressProblem extends XPRSprob Optimizer interface that allows modeling by objects.
-  
    
   -  
         Nested Class SummaryModifier and Type Class Description static classXpressProblem.BranchObjectSubclass ofXPRSbranchobjectthat allows usingVariableinstances to specify bounds and constraints.static classXpressProblem.CallbackAPIAPI for adding and removing callbacks to this problem.-  
           Nested classes/interfaces inherited from class com.dashoptimization.XPRSprobXPRSprob.AbstractUserFunction, XPRSprob.AttributeInfo, XPRSprob.Attributes, XPRSprob.BasisValue, XPRSprob.ControlInfo, XPRSprob.Controls, XPRSprob.GeneralConstraintInfo, XPRSprob.GlobalInfo, XPRSprob.IISData, XPRSprob.IISStatusInfo, XPRSprob.InfeasInfo, XPRSprob.MapDeltaFunction, XPRSprob.MapDeltaFunctor, XPRSprob.MapFunction, XPRSprob.MapFunctor, XPRSprob.MatrixInfo, XPRSprob.MatrixTriplets, XPRSprob.MIPEntityInfo, XPRSprob.MultiMapDeltaFunction, XPRSprob.MultiMapDeltaFunctor, XPRSprob.MultiMapFunction, XPRSprob.MultiMapFunctor, XPRSprob.PWLInfo, XPRSprob.RowInfo, XPRSprob.Solution, XPRSprob.SolVal, XPRSprob.StatusSolution, XPRSprob.VecMapDeltaFunction, XPRSprob.VecMapDeltaFunctor, XPRSprob.VecMapFunction, XPRSprob.VecMapFunctor
 
-  
           
 -  
         Field SummaryModifier and Type Field Description XpressProblem.CallbackAPIcallbacksProperty through which callbacks for this instance can be accessed.static VariableNULL_VARIABLEVariable object that is used to indicate a constant term in expressions that are implemented as maps.-  
           Fields inherited from class com.dashoptimization.XPRSprobcannotAddPWLs, cannotAddSets, EQ, GEQ, LEQ
 
-  
           
 -  
         Constructor SummaryConstructor Description XpressProblem()Create a new problem without internal name.XpressProblem(java.lang.String problemName)Create a new problem with internal name.XpressProblem(java.lang.String problemName, java.lang.String licensePath)Create a new problem with internal name and non-default license.
 -  
         Method SummaryModifier and Type Method Description <C extends Index>
 CaddConstraint(ConstraintDefinition<C> def)Add a single constraint to this problem.<C extends Index>
 java.util.stream.Stream<C>addConstraints(int[] data, java.util.function.IntFunction<ConstraintDefinition<C>> defs)Add multiple constraints of the same type to the problem.<C extends Index>
 voidaddConstraints(int count1, int count2, int count3, int count4, int count5, Function5<java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<C extends Index>
 voidaddConstraints(int count1, int count2, int count3, int count4, Function4<java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<C extends Index>
 voidaddConstraints(int count1, int count2, int count3, Function3<java.lang.Integer,java.lang.Integer,java.lang.Integer,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<C extends Index>
 voidaddConstraints(int count1, int count2, java.util.function.BiFunction<java.lang.Integer,java.lang.Integer,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<C extends Index>
 java.util.stream.Stream<C>addConstraints(int count, java.util.function.IntFunction<ConstraintDefinition<C>> defs)Add multiple constraints of the same type to the problem.<C extends Index>
 java.util.stream.Stream<C>addConstraints(ConstraintDefinition<C>[] defs)Add multiple of the same type constraints to the problem.<K1,K2,K3,C extends Index>
 voidaddConstraints(java.lang.Iterable<K1> iterable1, java.lang.Iterable<K2> iterable2, java.lang.Iterable<K3> iterable3, Function3<K1,K2,K3,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<K1,K2,K3,K4,C extends Index>
 voidaddConstraints(java.lang.Iterable<K1> iterable1, java.lang.Iterable<K2> iterable2, java.lang.Iterable<K3> iterable3, java.lang.Iterable<K4> iterable4, Function4<K1,K2,K3,K4,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<K1,K2,K3,K4,K5,C extends Index>
 voidaddConstraints(java.lang.Iterable<K1> iterable1, java.lang.Iterable<K2> iterable2, java.lang.Iterable<K3> iterable3, java.lang.Iterable<K4> iterable4, java.lang.Iterable<K5> iterable5, Function5<K1,K2,K3,K4,K5,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<K1,K2,C extends Index>
 voidaddConstraints(java.lang.Iterable<K1> iterable1, java.lang.Iterable<K2> iterable2, java.util.function.BiFunction<K1,K2,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<C extends Index,T extends ConstraintDefinition<C>>
 java.util.stream.Stream<C>addConstraints(java.lang.Iterable<T> defs)Add multiple constraints of the same type to the problem.<T,C extends Index>
 java.util.stream.Stream<C>addConstraints(java.lang.Iterable<T> data, java.util.function.Function<T,ConstraintDefinition<C>> defs)Add multiple constraints of the same type to the problem.<T,C extends Index>
 java.util.stream.Stream<java.util.Map.Entry<T,C>>addConstraints(java.util.Iterator<T> data, java.util.function.Function<T,ConstraintDefinition<C>> defs)Add multiple constraints of the same type to the problem.<C extends Index>
 java.util.stream.Stream<C>addConstraints(java.util.stream.IntStream data, java.util.function.IntFunction<ConstraintDefinition<C>> defs)Add multiple constraints of the same type to the problem.<C extends Index,T extends ConstraintDefinition<C>>
 java.util.stream.Stream<C>addConstraints(java.util.stream.Stream<T> defs)Add multiple constraints of the same type to the problem.<T,C extends Index>
 java.util.stream.Stream<C>addConstraints(java.util.stream.Stream<T> data, java.util.function.Function<T,ConstraintDefinition<C>> defs)Add multiple constraints of the same type to the problem.<K1,K2,C extends Index>
 voidaddConstraints(K1[] array1, K2[] array2, java.util.function.BiFunction<K1,K2,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<K1,K2,K3,C extends Index>
 voidaddConstraints(K1[] array1, K2[] array2, K3[] array3, Function3<K1,K2,K3,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<K1,K2,K3,K4,C extends Index>
 voidaddConstraints(K1[] array1, K2[] array2, K3[] array3, K4[] array4, Function4<K1,K2,K3,K4,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<K1,K2,K3,K4,K5,C extends Index>
 voidaddConstraints(K1[] array1, K2[] array2, K3[] array3, K4[] array4, K5[] array5, Function5<K1,K2,K3,K4,K5,ConstraintDefinition<C>> makeConstraint)Add multiple constraints to this problem.<T,C extends Index>
 java.util.stream.Stream<C>addConstraints(T[] data, java.util.function.Function<T,ConstraintDefinition<C>> defs)Add multiple constraints of the same type to the problem.intaddCut(int cuttype, Inequality.Definition cut)Add a cut at the current node.voidaddMipSol(double[] values, Variable[] variables, java.lang.String name)Adds a new feasible, infeasible or partial MIP solution for the problem to the Optimizer.voidaddObjective(Expression obj, int priority, double weight)Add a new objective function.VariableaddVariable()Add a single variable to this problem.VariableaddVariable(double lb, double ub, ColumnType type)Add a single variable to this problem.VariableaddVariable(double lb, double ub, ColumnType type, double limit, java.lang.String name)Add a single variable to this problem.VariableaddVariable(double lb, double ub, ColumnType type, java.lang.String name)Add a single variable to this problem.VariableaddVariable(ColumnType type)Add a single variable to this problem.VariableaddVariable(ColumnType type, java.lang.String name)Add a single variable to this problem.VariableaddVariable(java.lang.String name)Add a single variable to this problem.VariableBuilder.VariableArrayBuilderaddVariables(int dim)Create an 1 dimensional array of variables.VariableBuilder.VariableArray2BuilderaddVariables(int dim1, int dim2)Create an 2 dimensional array of variables.VariableBuilder.VariableArray3BuilderaddVariables(int dim1, int dim2, int dim3)Create an 3 dimensional array of variables.VariableBuilder.VariableArray4BuilderaddVariables(int dim1, int dim2, int dim3, int dim4)Create an 4 dimensional array of variables.VariableBuilder.VariableArray5BuilderaddVariables(int dim1, int dim2, int dim3, int dim4, int dim5)Create an 5 dimensional array of variables.<K1> VariableBuilder.VariableMapBuilder<K1>addVariables(java.util.Collection<K1> coll1)Create an 1 dimensional map of variables.<K1,K2>
 VariableBuilder.VariableMap2Builder<K1,K2>addVariables(java.util.Collection<K1> coll1, java.util.Collection<K2> coll2)Create an 2 dimensional map of variables.<K1,K2,K3>
 VariableBuilder.VariableMap3Builder<K1,K2,K3>addVariables(java.util.Collection<K1> coll1, java.util.Collection<K2> coll2, java.util.Collection<K3> coll3)Create an 3 dimensional map of variables.<K1,K2,K3,K4>
 VariableBuilder.VariableMap4Builder<K1,K2,K3,K4>addVariables(java.util.Collection<K1> coll1, java.util.Collection<K2> coll2, java.util.Collection<K3> coll3, java.util.Collection<K4> coll4)Create an 4 dimensional map of variables.<K1,K2,K3,K4,K5>
 VariableBuilder.VariableMap5Builder<K1,K2,K3,K4,K5>addVariables(java.util.Collection<K1> coll1, java.util.Collection<K2> coll2, java.util.Collection<K3> coll3, java.util.Collection<K4> coll4, java.util.Collection<K5> coll5)Create an 5 dimensional map of variables.<K1> VariableBuilder.VariableMapBuilder<K1>addVariables(java.util.stream.Stream<K1> strm)Create an 1 dimensional map of variables.<K1> VariableBuilder.VariableMapBuilder<K1>addVariables(K1[] arr1)Create an 1 dimensional map of variables.<K1,K2>
 VariableBuilder.VariableMap2Builder<K1,K2>addVariables(K1[] arr1, K2[] arr2)Create an 2 dimensional map of variables.<K1,K2,K3>
 VariableBuilder.VariableMap3Builder<K1,K2,K3>addVariables(K1[] arr1, K2[] arr2, K3[] arr3)Create an 3 dimensional map of variables.<K1,K2,K3,K4>
 VariableBuilder.VariableMap4Builder<K1,K2,K3,K4>addVariables(K1[] arr1, K2[] arr2, K3[] arr3, K4[] arr4)Create an 4 dimensional map of variables.<K1,K2,K3,K4,K5>
 VariableBuilder.VariableMap5Builder<K1,K2,K3,K4,K5>addVariables(K1[] arr1, K2[] arr2, K3[] arr3, K4[] arr4, K5[] arr5)Create an 5 dimensional map of variables.voidbndSA(int len, Variable[] variables, double[] lblower, double[] lbupper, double[] ublower, double[] ubupper)Returns upper and lower sensitivity ranges for specified variables' lower and upper bounds.voidbndSA(Variable[] variables, double[] lblower, double[] lbupper, double[] ublower, double[] ubupper)Returns upper and lower sensitivity ranges for specified variables' lower and upper bounds.Variable[][]buildVariables(VariableBuilder.Array2Builder builder)Create a variable array from a builder.<I> IbuildVariables(VariableBuilder.Array2Builder builder, java.util.function.Supplier<I> makeResult, Action4<I,java.lang.Integer,java.lang.Integer,Variable> addResult)Create a variable array from a builder.Variable[][][]buildVariables(VariableBuilder.Array3Builder builder)Create a variable array from a builder.<I> IbuildVariables(VariableBuilder.Array3Builder builder, java.util.function.Supplier<I> makeResult, Action5<I,java.lang.Integer,java.lang.Integer,java.lang.Integer,Variable> addResult)Create a variable array from a builder.Variable[][][][]buildVariables(VariableBuilder.Array4Builder builder)Create a variable array from a builder.<I> IbuildVariables(VariableBuilder.Array4Builder builder, java.util.function.Supplier<I> makeResult, Action6<I,java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,Variable> addResult)Create a variable array from a builder.Variable[][][][][]buildVariables(VariableBuilder.Array5Builder builder)Create a variable array from a builder.<I> IbuildVariables(VariableBuilder.Array5Builder builder, java.util.function.Supplier<I> makeResult, Action7<I,java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,Variable> addResult)Create a variable array from a builder.Variable[]buildVariables(VariableBuilder.ArrayBuilder builder)Create a variable array from a builder.<I> IbuildVariables(VariableBuilder.ArrayBuilder builder, java.util.function.Supplier<I> makeResult, Action3<I,java.lang.Integer,Variable> addResult)Create a variable array from a builder.<K1,K2>
 HashMap2<K1,K2,Variable>buildVariables(VariableBuilder.Map2Builder<K1,K2> builder)Create a variable map from a builder.<I,K1,K2>
 IbuildVariables(VariableBuilder.Map2Builder<K1,K2> builder, java.util.function.Supplier<I> makeResult, Action4<I,K1,K2,Variable> addResult)Create a variable map from a builder.<K1,K2,K3>
 HashMap3<K1,K2,K3,Variable>buildVariables(VariableBuilder.Map3Builder<K1,K2,K3> builder)Create a variable map from a builder.<I,K1,K2,K3>
 IbuildVariables(VariableBuilder.Map3Builder<K1,K2,K3> builder, java.util.function.Supplier<I> makeResult, Action5<I,K1,K2,K3,Variable> addResult)Create a variable map from a builder.<K1,K2,K3,K4>
 HashMap4<K1,K2,K3,K4,Variable>buildVariables(VariableBuilder.Map4Builder<K1,K2,K3,K4> builder)Create a variable map from a builder.<I,K1,K2,K3,K4>
 IbuildVariables(VariableBuilder.Map4Builder<K1,K2,K3,K4> builder, java.util.function.Supplier<I> makeResult, Action6<I,K1,K2,K3,K4,Variable> addResult)Create a variable map from a builder.<K1,K2,K3,K4,K5>
 HashMap5<K1,K2,K3,K4,K5,Variable>buildVariables(VariableBuilder.Map5Builder<K1,K2,K3,K4,K5> builder)Create a variable map from a builder.<I,K1,K2,K3,K4,K5>
 IbuildVariables(VariableBuilder.Map5Builder<K1,K2,K3,K4,K5> builder, java.util.function.Supplier<I> makeResult, Action7<I,K1,K2,K3,K4,K5,Variable> addResult)Create a variable map from a builder.<K1> java.util.HashMap<K1,Variable>buildVariables(VariableBuilder.MapBuilder<K1> builder)Create a variable map from a builder.<I,K1>
 IbuildVariables(VariableBuilder.MapBuilder<K1> builder, java.util.function.Supplier<I> makeResult, Action3<I,K1,Variable> addResult)Create a variable map from a builder.voidchgBounds(Variable[] variables, byte[] bndType, double[] bndValue)Change bounds for multiple variables.XpressProblemchgCoef(Inequality row, Variable variable, double coefficient)Changes the coefficient forvariableinrowin the linear matrix.XpressProblemchgCoefs(Inequality[] row, Variable[] variable, double[] coefficient)Change coefficients in the linear matrix.voidchgColType(Variable[] variables, ColumnType[] colType)Change types for multiple variables.XpressProblemchgObj(Variable[] variables, double[] coefficients)Change objective function coefficients.XpressProblemchgObj(Variable variable, double coefficient)Change objective function coefficient.XpressProblemchgObjN(int objidx, Variable[] variables, double[] coefficients)Change objective function coefficients.XpressProblemchgObjN(int objidx, Variable variable, double coefficient)Change an objective function coefficient.voidchgRHS(Inequality[] rows, double[] newRHS)Change right-hand side for multiple rows.voidchgRHSrange(Inequality[] rows, double[] newRange)Change right-hand side ranges for multiple rows.voidchgRowType(Inequality[] rows, RowType[] rowType)Change types for multiple rows.XpressProblem.BranchObjectcreateBranchObject()Create a new branch object.voiddelCols(int ncols, int[] colind)Delete columns from this problem.voiddelGenCons(int nconstraints, int[] conind)Delete constraints from this problem.voiddelGeneralConstraints(GeneralConstraint[] constraints)Delete general constraints.voiddelIndicator(Inequality row)Delete a single indicator constraint.voiddelInequalities(Inequality[] rows)voiddelPwlCons(int npwls, int[] pwlind)Delete piecewise linear constraints from this problem.voiddelPwlConstraints(PWL[] pwls)voiddelRows(int nrows, int[] rowind)Delete rows from this problem.voiddelSets(int nsets, int[] sosind)Delete sets from this problem.voiddelSOS(SOS sos)Delete a single SOS from the problem.voiddelSOS(SOS[] soss)Delete special ordered set constraints.voiddelVariables(Variable[] vars)GeneralConstraintgeneralConstraintForIndex(int index)Map a general constraint index to aGeneralConstraintobject.GeneralConstraint[]generalConstraintForIndices(int first, int last)Map a range of general constraint indices toGeneralConstraintobjects.doublegetCoef(Inequality row, Variable variable)Query a single coefficient from the linear matrix.doublegetDual(Inequality r)Get the dual for a single row.double[]getDuals(Inequality[] rows)Get the duals for an array of rows.double[]getDuals(java.util.Collection<Inequality> rows)Get the duals for a collection of rows.GeneralConstraint[]getGeneralConstraints()Get all the general constraints currently defined in this problem.IISgetIIS(int iis)Get the specified IIS.IndicatorObjectsgetIndicator(Inequality row)Get indicator information for a single row.Inequality[]getInequalities()Get all the inequalities currently defined in this problem.LinTermListgetInequalityLinear(Inequality row)Get the linear part of the left-hand side of a row.LinExpressiongetInequalityLinear(Inequality row, java.util.function.Supplier<LinExpression> expression)Get the linear part of the left-hand side of a row.ExpressiongetLhsExpression(int row)Get the left-hand side of a row as an expression.doublegetObj(Variable variable)Query an objective function coefficient.doublegetObjN(int objidx, Variable variable)Query an objective function coefficient.doublegetRedCost(Variable v)Get the reduced cost for a single variable.double[]getRedCosts(Variable[] vars)Get the reduced costs for an array of variables.double[]getRedCosts(java.util.Collection<Variable> vars)Get the reduced costs for a collection of variables.doublegetSlack(Inequality r)Get the current slack for a single row.double[]getSlacks(Inequality[] rows)Get the current slacks for an array of rows.double[]getSlacks(java.util.Collection<Inequality> rows)Get the current slacks for a collection of rows.doublegetSolution(Variable v)Get the current solution for a single variable.double[]getSolution(Variable[] vars)Get the current solution for an array of variables.double[]getSolution(java.util.Collection<Variable> vars)Get the current solution for a collection of variables.Variable[]getVariables()Get all the variables currently defined in this problem.Inequality[]inequalitiesForIndices(int first, int last)InequalityinequalityForIndex(int index)booleanisOriginal()Check whether this model instance is in the original state.voidloadDelayedRows(Inequality[] rows)Marks a set of rows as delayed rows.voidloadModelCuts(Inequality[] rows)Marks a set of rows as model cuts.voidnlpSetInitVal(Variable[] variables, double[] values)Set initial values of variables for a non-linear solve.voidnlpSetInitVal(java.util.Map<Variable,java.lang.Double> values)Set initial values of variables for a non-linear solve.voidobjSA(int len, Variable[] variables, double[] lower, double[] upper)Returns upper and lower sensitivity ranges for specified objective function coefficients.voidobjSA(Variable[] variables, double[] lower, double[] upper)Returns upper and lower sensitivity ranges for specified objective function coefficients.PWLpwlForIndex(int index)PWL[]pwlsForIndices(int first, int last)intrepairWeightedInfeas(java.util.Map<Inequality,java.lang.Double> lepref, java.util.Map<Inequality,java.lang.Double> gepref, java.util.Map<Variable,java.lang.Double> lbpref, java.util.Map<Variable,java.lang.Double> ubpref, char phase2, double delta, java.lang.String flags)Repair infeasibilities using weights.voidrhsSA(int len, Inequality[] rows, double[] lower, double[] upper)Returns upper and lower sensitivity ranges for specified right hand side (RHS) function coefficients.voidrhsSA(Inequality[] rows, double[] lower, double[] upper)Returns upper and lower sensitivity ranges for specified right hand side (RHS) function coefficients.voidsetIndicator(Variable indicatorVariable, boolean indicatorValue, Inequality row)Add an indicator constraint to this model.voidsetIndicators(int[] data, java.util.function.IntFunction<Variable> indicatorVariable, java.util.function.IntFunction<java.lang.Boolean> indicatorValue, java.util.function.IntFunction<Inequality> row)Add indicator constraints to this model.voidsetIndicators(int count, java.util.function.Function<java.lang.Integer,Variable> indicatorVariable, java.util.function.Function<java.lang.Integer,java.lang.Boolean> indicatorValue, java.util.function.Function<java.lang.Integer,Inequality> row)Add indicator constraints to this model.voidsetIndicators(Variable[] indicatorVariable, boolean[] indicatorValue, Inequality[] row)Add indicator constraints to this model.<T> voidsetIndicators(java.lang.Iterable<T> data, java.util.function.Function<T,Variable> indicatorVariable, java.util.function.Function<T,java.lang.Boolean> indicatorValue, java.util.function.Function<T,Inequality> row)Add indicator constraints to this model.<T> voidsetIndicators(java.util.Collection<T> data, java.util.function.Function<T,Variable> indicatorVariable, java.util.function.Function<T,java.lang.Boolean> indicatorValue, java.util.function.Function<T,Inequality> row)Add indicator constraints to this model.voidsetIndicators(java.util.stream.IntStream data, java.util.function.IntFunction<Variable> indicatorVariable, java.util.function.IntFunction<java.lang.Boolean> indicatorValue, java.util.function.IntFunction<Inequality> row)Add indicator constraints to this model.<T> voidsetIndicators(java.util.stream.Stream<T> data, java.util.function.Function<T,Variable> indicatorVariable, java.util.function.Function<T,java.lang.Boolean> indicatorValue, java.util.function.Function<T,Inequality> row)Add indicator constraints to this model.<T> voidsetIndicators(T[] data, java.util.function.Function<T,Variable> indicatorVariable, java.util.function.Function<T,java.lang.Boolean> indicatorValue, java.util.function.Function<T,Inequality> row)Add indicator constraints to this model.voidsetObjective(int idx, Expression obj, int priority, double weight, double abstol, double reltol)Set an objective function and its controls.voidsetObjective(Expression obj)Set the objective function to a new expression.voidsetObjective(Expression obj, XPRSenumerations.ObjSense sense)Set the objective function to a new expression.static <T extends java.lang.Comparable<T>>
 voidsortParallelArrays(T[] mvec, double[] dvec, int offset, int size)Sort parallel arrays according to index keys.static <T extends java.lang.Comparable<T>>
 voidsortParallelArrays(T[] key1, T[] key2, double[] dvec, int offset, int size)Sort parallel arrays according to integer pair keys.SOSsosForIndex(int index)SOS[]sosForIndices(int first, int last)VariablevariableForIndex(int index)Variable[]variablesForIndices(int first, int last)-  
           Methods inherited from class com.dashoptimization.XPRSprobaddAfterObjectiveListener, addAfterObjectiveListener, addAfterObjectiveListener, addAfterObjectiveListener, addBarIterationListener, addBarIterationListener, addBarIterationListener, addBarIterationListener, addBarLogListener, addBarLogListener, addBarLogListener, addBarLogListener, addBeforeObjectiveListener, addBeforeObjectiveListener, addBeforeObjectiveListener, addBeforeObjectiveListener, addBeforeSolveListener, addBeforeSolveListener, addBeforeSolveListener, addBeforeSolveListener, addChangeBranchObjectListener, addChangeBranchObjectListener, addChangeBranchObjectListener, addChangeBranchObjectListener, addCheckTimeListener, addCheckTimeListener, addCheckTimeListener, addCheckTimeListener, addChgBranchListener, addChgBranchListener, addChgBranchListener, addChgBranchListener, addChgNodeListener, addChgNodeListener, addChgNodeListener, addChgNodeListener, addCol, addCol, addCol, addCol, addCol, addCol, addCols, addCols, addColumn, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addColumns, addComputeRestartListener, addComputeRestartListener, addComputeRestartListener, addComputeRestartListener, addCut, addCut, addCutLogListener, addCutLogListener, addCutLogListener, addCutLogListener, addCutMgrListener, addCutMgrListener, addCutMgrListener, addCutMgrListener, addCuts, addCuts, addDestroyMTListener, addDestroyMTListener, addDestroyMTListener, addDestroyMTListener, addGapNotifyListener, addGapNotifyListener, addGapNotifyListener, addGapNotifyListener, addGenCons, addGenCons, addInfNodeListener, addInfNodeListener, addInfNodeListener, addInfNodeListener, addIntSolListener, addIntSolListener, addIntSolListener, addIntSolListener, addLpLogListener, addLpLogListener, addLpLogListener, addLpLogListener, addMessageListener, addMessageListener, addMessageListener, addMessageListener, addMipLogListener, addMipLogListener, addMipLogListener, addMipLogListener, addMipSol, addMipSol, addMipSol, addMipThreadListener, addMipThreadListener, addMipThreadListener, addMipThreadListener, addMsgHandlerListener, addMsgHandlerListener, addMsgHandlerListener, addMsgHandlerListener, addMsJobEndListener, addMsJobEndListener, addMsJobEndListener, addMsJobEndListener, addMsJobStartListener, addMsJobStartListener, addMsJobStartListener, addMsJobStartListener, addMsWinnerListener, addMsWinnerListener, addMsWinnerListener, addMsWinnerListener, addNames, addNames, addNewnodeListener, addNewnodeListener, addNewnodeListener, addNewnodeListener, addNlpCoefEvalErrorListener, addNlpCoefEvalErrorListener, addNlpCoefEvalErrorListener, addNlpCoefEvalErrorListener, addNodeCutoffListener, addNodeCutoffListener, addNodeCutoffListener, addNodeCutoffListener, addNodeLPSolvedListener, addNodeLPSolvedListener, addNodeLPSolvedListener, addNodeLPSolvedListener, addObj, addOptNodeListener, addOptNodeListener, addOptNodeListener, addOptNodeListener, addPreIntsolListener, addPreIntsolListener, addPreIntsolListener, addPreIntsolListener, addPreNodeListener, addPreNodeListener, addPreNodeListener, addPreNodeListener, addPresolveListener, addPresolveListener, addPresolveListener, addPresolveListener, addPwlCons, addPwlCons, addQMatrix, addQMatrix, addRow, addRow, addRow, addRow, addRow, addRows, addRows, addRows, addRows, addSet, addSetNames, addSets, addSets, addSets, addSets, addSlpCascadeEndListener, addSlpCascadeEndListener, addSlpCascadeEndListener, addSlpCascadeEndListener, addSlpCascadeStartListener, addSlpCascadeStartListener, addSlpCascadeStartListener, addSlpCascadeStartListener, addSlpCascadeVarFailListener, addSlpCascadeVarFailListener, addSlpCascadeVarFailListener, addSlpCascadeVarFailListener, addSlpCascadeVarListener, addSlpCascadeVarListener, addSlpCascadeVarListener, addSlpCascadeVarListener, addSlpConstructListener, addSlpConstructListener, addSlpConstructListener, addSlpConstructListener, addSlpDrColListener, addSlpDrColListener, addSlpDrColListener, addSlpDrColListener, addSlpIntSolListener, addSlpIntSolListener, addSlpIntSolListener, addSlpIntSolListener, addSlpIterEndListener, addSlpIterEndListener, addSlpIterEndListener, addSlpIterEndListener, addSlpIterStartListener, addSlpIterStartListener, addSlpIterStartListener, addSlpIterStartListener, addSlpIterVarListener, addSlpIterVarListener, addSlpIterVarListener, addSlpIterVarListener, addSlpPreUpdateLinearizationListener, addSlpPreUpdateLinearizationListener, addSlpPreUpdateLinearizationListener, addSlpPreUpdateLinearizationListener, addUserSolNotifyListener, addUserSolNotifyListener, addUserSolNotifyListener, addUserSolNotifyListener, alter, attributes, basisCondition, basisStability, basisStability, basisStability, binVar, binVar, binVarArray, binVarArray, binVarMap, binVarMap, bndsa, btran, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, buildColumns, calcObjective, calcObjective, calcObjN, calcObjN, calcReducedCosts, calcSlacks, calcSolInfo, calcSolInfo, chgBounds, chgBounds, chgCoef, chgColType, chgColType, chgGlbLimit, chgGlbLimit, chgLB, chgMCoef, chgMCoef, chgMCoef, chgMQObj, chgMQObj, chgMQObj, chgObj, chgObj, chgObjN, chgObjSense, chgObjSense, chgQObj, chgQRowCoeff, chgRHS, chgRHS, chgRHSrange, chgRHSrange, chgRowType, chgRowType, chgUB, clearIIS, clearObjective, clearRowFlags, close, controls, contVar, contVar, contVar, contVar, contVarArray, contVarArray, contVarArray, contVarArray, contVarArray, contVarMap, contVarMap, copyCallBacks, copyControls, copyProb, createBranchObject, createBranchObjectFromGlobal, crossoverLpSol, crossoverLpSol, delCPCuts, delCPCuts, delCPCuts, delCPCuts, delCPCuts, delCuts, delCuts, delCuts, delCuts, delCuts, delCuts, delIndicator, delIndicators, delObj, delQMatrix, destroyProb, dumpControls, estimateRowDualRanges, firstIIS, firstIIS, fixGlobals, fixMIPEntities, ftran, getAttribInfo, getAttribInfo, getBarNumStability, getBasis, getBasisVal, getBasisVal, getCoef, getCoef, getColBasisVal, getCols, getCols, getCols, getCols, getCols, getColType, getColType, getColType, getColumnName, getColumnNames, getControlInfo, getControlInfo, getCPCutList, getCPCutList, getCPCutList, getCPCutList, getCPCuts, getCPCuts, getCPCuts, getCutList, getCutList, getCutList, getCutList, getCutList, getCutMap, getCutSlack, getCutSlack, getDblAttrib, getDblAttrib, getDblControl, getDblControl, getDirs, getDirs, getDirs, getDiscreteCols, getDual, getDual, getDualRay, getDualRay, getDuals, getDuals, getDuals, getDuals, getDuals, getGenCons, getGenCons, getGenCons, getGenConsName, getGenConsNames, getGlobal, getGlobal, getGlobalEntities, getGlobalSets, getIISData, getIISData, getIndex, getIndex, getIndicator, getIndicators, getIndicators, getInfeas, getInfeas, getIntAttrib, getIntAttrib, getIntControl, getIntControl, getLastBarSol, getLastBarSol, getLastBarSol, getLastBarSolDjs, getLastBarSolDuals, getLastBarSolSlack, getLastBarSolX, getLastError, getLastError, getLB, getLB, getLB, getLongAttrib, getLongAttrib, getLongControl, getLongControl, getLpSol, getLpSol, getLpSol, getLpSolDjs, getLpSolDuals, getLpSolSlack, getLpSolVal, getLpSolVal, getLpSolX, getMessageStatus, getMessageStatus, getMIPEntities, getMIPEntities, getMIPEntities, getMIPEntities, getMIPEntities, getMipSol, getMipSol, getMipSol, getMipSolSlack, getMipSolVal, getMipSolVal, getMipSolX, getMQObj, getMQObj, getMQObj, getMQObj, getMQObj, getName, getName, getNameListObject, getNames, getNames, getNames, getNames, getNlpsol, getObj, getObj, getObj, getObjDblAttrib, getObjDblAttrib, getObjDblControl, getObjDblControl, getObjIntAttrib, getObjIntAttrib, getObjIntAttrib, getObjIntControl, getObjIntControl, getObjLongAttrib, getObjN, getPivotOrder, getPivots, getPresolveBasis, getPresolveMap, getPresolveSol, getPresolveSol, getPresolveSol, getPresolveSolDjs, getPresolveSolDuals, getPresolveSolSlack, getPresolveSolX, getPrimalRay, getPrimalRay, getProbName, getProbName, getPwlCons, getPwlCons, getPwlCons, getPWLName, getPWLNames, getQObj, getQObj, getQRowCoeff, getQRowCoeff, getQRowIndices, getQRowQMatrix, getQRowQMatrix, getQRowQMatrixTriplets, getQRowQMatrixTriplets, getQRowQMatrixTriplets, getQRows, getQRows, getQRows, getRedCost, getRedCost, getRedCosts, getRedCosts, getRedCosts, getRedCosts, getRedCosts, getRHS, getRHS, getRHS, getRHSrange, getRHSrange, getRHSrange, getRowBasisVal, getRowFlags, getRowFlags, getRowFlags, getRowName, getRowNames, getRows, getRows, getRows, getRows, getRows, getRowType, getRowType, getRowType, getScale, getScaledInfeas, getScaledInfeas, getSetName, getSetNames, getSets, getSlack, getSlack, getSlacks, getSlacks, getSlacks, getSlacks, getSlacks, getSol, getSol, getSol, getSolDjs, getSolDuals, getSolSlack, getSolution, getSolution, getSolution, getSolution, getSolution, getSolution, getSolution, getSolX, getStrAttrib, getStrAttrib, getStrControl, getStrControl, getStringControl, getStrStringAttrib, getUB, getUB, getUB, getUnbVec, getUnbVec, iISAll, IISAll, iISIsolations, IISIsolations, iISStatus, IISStatus, IISStatus, interrupt, interrupt, interrupt, intVar, intVar, intVar, intVar, intVarArray, intVarArray, intVarArray, intVarArray, intVarArray, intVarMap, intVarMap, loadBasis, loadBranchDirs, loadBranchDirs, loadCuts, loadCuts, loadCuts, loadCuts, loadDelayedRows, loadDirs, loadGlobal, loadGlobal, loadLp, loadLp, loadLp, loadLp, loadLPSol, loadLPSol, loadMIP, loadMIP, loadMipSol, loadMipSol, loadMIQCQP, loadMIQCQP, loadMIQP, loadMIQP, loadModelCuts, loadPresolveBasis, loadPresolveDirs, loadQCQP, loadQCQP, loadQCQPGlobal, loadQCQPGlobal, loadQGlobal, loadQGlobal, loadQP, loadQP, loadSecureVecs, lpOptimize, lpOptimize, maxim, maxim, minim, minim, mipOptimize, mipOptimize, msAddCustomPreset, msAddJob, msAddPreset, msClear, nextIIS, nextIIS, nlpAddFormulas, nlpAddUserFunction, nlpAddUserFunction, nlpAddUserFunction, nlpAddUserFunction, nlpAddUserFunction, nlpAddUserFunction, nlpCalcSlacks, nlpChgFormula, nlpChgFormulaStr, nlpChgFormulaString, nlpCurrentIV, nlpDelFormulas, nlpDelUserFunction, nlpEvaluateFormula, nlpEvaluateFormula, nlpGetFormula, nlpGetFormulaRows, nlpGetFormulaStr, nlpGetFormulaString, nlpImportLibFunc, nlpLoadFormulas, nlpOptimize, nlpPostsolveProb, nlpPrintEvalInfo, nlpSetFunctionError, nlpSetInitVal, nlpSetInitVal, nlpValidate, nlpValidateKKT, nlpValidateRow, nlpValidateVector, objSA, optimize, optimize, optimize, pivot, postSolve, postSolveSol, presolveRow, presolveRow, presolveRow, readBasis, readBasis, readBasis, readBinSol, readBinSol, readBinSol, readDirs, readDirs, readProb, readProb, readSlxSol, readSlxSol, readSlxSol, refineMipSol, refineMipSol, removeAfterObjectiveListener, removeAfterObjectiveListener, removeAfterObjectiveListener, removeAfterObjectiveListeners, removeBarIterationListener, removeBarIterationListener, removeBarIterationListener, removeBarIterationListeners, removeBarLogListener, removeBarLogListener, removeBarLogListener, removeBarLogListeners, removeBeforeObjectiveListener, removeBeforeObjectiveListener, removeBeforeObjectiveListener, removeBeforeObjectiveListeners, removeBeforeSolveListener, removeBeforeSolveListener, removeBeforeSolveListener, removeBeforeSolveListeners, removeChangeBranchObjectListener, removeChangeBranchObjectListener, removeChangeBranchObjectListener, removeChangeBranchObjectListeners, removeCheckTimeListener, removeCheckTimeListener, removeCheckTimeListener, removeCheckTimeListeners, removeChgBranchListener, removeChgBranchListener, removeChgBranchListener, removeChgBranchListeners, removeChgNodeListener, removeChgNodeListener, removeChgNodeListener, removeChgNodeListeners, removeComputeRestartListener, removeComputeRestartListener, removeComputeRestartListener, removeComputeRestartListeners, removeCutLogListener, removeCutLogListener, removeCutLogListener, removeCutLogListeners, removeCutMgrListener, removeCutMgrListener, removeCutMgrListener, removeCutMgrListeners, removeDestroyMTListener, removeDestroyMTListener, removeDestroyMTListener, removeDestroyMTListeners, removeGapNotifyListener, removeGapNotifyListener, removeGapNotifyListener, removeGapNotifyListeners, removeInfNodeListener, removeInfNodeListener, removeInfNodeListener, removeInfNodeListeners, removeIntSolListener, removeIntSolListener, removeIntSolListener, removeIntSolListeners, removeLpLogListener, removeLpLogListener, removeLpLogListener, removeLpLogListeners, removeMessageListener, removeMessageListener, removeMessageListener, removeMessageListeners, removeMipLogListener, removeMipLogListener, removeMipLogListener, removeMipLogListeners, removeMipThreadListener, removeMipThreadListener, removeMipThreadListener, removeMipThreadListeners, removeMsgHandlerListener, removeMsgHandlerListener, removeMsgHandlerListener, removeMsgHandlerListeners, removeMsJobEndListener, removeMsJobEndListener, removeMsJobEndListener, removeMsJobEndListeners, removeMsJobStartListener, removeMsJobStartListener, removeMsJobStartListener, removeMsJobStartListeners, removeMsWinnerListener, removeMsWinnerListener, removeMsWinnerListener, removeMsWinnerListeners, removeNewnodeListener, removeNewnodeListener, removeNewnodeListener, removeNewnodeListeners, removeNlpCoefEvalErrorListener, removeNlpCoefEvalErrorListener, removeNlpCoefEvalErrorListener, removeNlpCoefEvalErrorListeners, removeNodeCutoffListener, removeNodeCutoffListener, removeNodeCutoffListener, removeNodeCutoffListeners, removeNodeLPSolvedListener, removeNodeLPSolvedListener, removeNodeLPSolvedListener, removeNodeLPSolvedListeners, removeOptNodeListener, removeOptNodeListener, removeOptNodeListener, removeOptNodeListeners, removePreIntsolListener, removePreIntsolListener, removePreIntsolListener, removePreIntsolListeners, removePreNodeListener, removePreNodeListener, removePreNodeListener, removePreNodeListeners, removePresolveListener, removePresolveListener, removePresolveListener, removePresolveListeners, removeSlpCascadeEndListener, removeSlpCascadeEndListener, removeSlpCascadeEndListener, removeSlpCascadeEndListeners, removeSlpCascadeStartListener, removeSlpCascadeStartListener, removeSlpCascadeStartListener, removeSlpCascadeStartListeners, removeSlpCascadeVarFailListener, removeSlpCascadeVarFailListener, removeSlpCascadeVarFailListener, removeSlpCascadeVarFailListeners, removeSlpCascadeVarListener, removeSlpCascadeVarListener, removeSlpCascadeVarListener, removeSlpCascadeVarListeners, removeSlpConstructListener, removeSlpConstructListener, removeSlpConstructListener, removeSlpConstructListeners, removeSlpDrColListener, removeSlpDrColListener, removeSlpDrColListener, removeSlpDrColListeners, removeSlpIntSolListener, removeSlpIntSolListener, removeSlpIntSolListener, removeSlpIntSolListeners, removeSlpIterEndListener, removeSlpIterEndListener, removeSlpIterEndListener, removeSlpIterEndListeners, removeSlpIterStartListener, removeSlpIterStartListener, removeSlpIterStartListener, removeSlpIterStartListeners, removeSlpIterVarListener, removeSlpIterVarListener, removeSlpIterVarListener, removeSlpIterVarListeners, removeSlpPreUpdateLinearizationListener, removeSlpPreUpdateLinearizationListener, removeSlpPreUpdateLinearizationListener, removeSlpPreUpdateLinearizationListeners, removeUserSolNotifyListener, removeUserSolNotifyListener, removeUserSolNotifyListener, removeUserSolNotifyListeners, repairInfeas, repairInfeas, repairWeightedInfeas, repairWeightedInfeas, repairWeightedInfeasBounds, repairWeightedInfeasBounds, restore, restore, restore, rhsSA, save, saveAs, scale, setDblControl, setDefaultControl, setDefaults, setIndicator, setIndicators, setIntControl, setLogFile, setLongControl, setMessageStatus, setObjDblControl, setObjective, setObjective, setObjIntControl, setProbname, setStrControl, slpAddCoefs, slpCascadeOrder, slpCascadeSol, slpChgCascadeNLimit, slpChgCCoef, slpChgCoef, slpChgCoefStr, slpChgDeltaType, slpChgRowStatus, slpChgRowStatus, slpChgRowWt, slpConstruct, slpDelCoefs, slpDelCoefs, slpEvaluateCoef, slpEvaluateCoef, slpFixPenalties, slpGetCCoef, slpGetCoefFormula, slpGetCoefs, slpGetCoefStr, slpGetRowStatus, slpGetRowWT, slpGetRowWT, slpLoadCoefs, slpReInitialize, slpSetDetRow, slpSetDetRow, slpUnConstruct, slpUpdateLinearization, sparseBTran, sparseFTran, storeCuts, storeCuts, storeCuts, strongBranch, strongBranchCB, tune, tuneProbSetFile, tunerReadMethod, tunerWriteMethod, unloadProb, varArray, varArray, varArray, varArray, varArray, varMap, varMap, writeBasis, writeBasis, writeBasis, writeBinSol, writeBinSol, writeBinSol, writeDirs, writeDirs, writeIIS, writeIIS, writeProb, writeProb, writeProb, writePrtSol, writePrtSol, writePrtSol, writeSlxSol, writeSlxSol, writeSlxSol, writeSol, writeSol, writeSol
 -  
           Methods inherited from class com.dashoptimization.XPRSobjectaddMsgHandlerListener, addMsgHandlerListener, destroy, isDestroyed
 
-  
           
 
-  
         
-  
    
   -  
         Field Detail-  NULL_VARIABLEpublic static final Variable NULL_VARIABLE Variable object that is used to indicate a constant term in expressions that are implemented as maps.- Since:
- 43.00
 
 -  callbackspublic final XpressProblem.CallbackAPI callbacks Property through which callbacks for this instance can be accessed.
 
-  
 -  
         Constructor Detail-  XpressProblempublic XpressProblem() Create a new problem without internal name. If not yet done then Xpress is initialized with the license found at the default license location. If Xpress is initialized this way then it will be automatically de-initialized once the newly created problem instance is closed.- Since:
- 43.00
 
 -  XpressProblempublic XpressProblem(java.lang.String problemName) Create a new problem with internal name. If not yet done then Xpress is initialized with the license found at the default license location. If Xpress is initialized this way then it will be automatically de-initialized once the newly created problem instance is closed.- Parameters:
- 
          problemName- Internal name of new problem, can benull.
- Since:
- 43.00
 
 -  XpressProblempublic XpressProblem(java.lang.String problemName, java.lang.String licensePath)Create a new problem with internal name and non-default license. If not yet done then Xpress is initialized with the license found atlicensePath. If Xpress is initialized this way then it will be automatically de-initialized once the newly created problem instance is closed.- Parameters:
- 
          problemName- Internal name of new problem, can benull.
- 
          licensePath- Path to license location. Can benullor the empty string to indicate that the license is in the default location.
- Since:
- 43.00
 
 
-  
 -  
         Method Detail-  chgObjpublic XpressProblem chgObj(Variable variable, double coefficient) Change objective function coefficient. This changes linear coefficient in the first/primary objective function. In order to delete a coefficient from the obejctive set it to 0 (zero),Used in these examples: - GlobalObjectiveParametrics
- GoalProg
 - Parameters:
- 
          variable- Variable for which to change coefficient.
- 
          coefficient- New coefficient for variables.
- Returns:
- Always returns this instance.
- Since:
- 43.00
 
 -  chgObjpublic XpressProblem chgObj(Variable[] variables, double[] coefficients) Change objective function coefficients. This changes linear coefficients in the first/primary objective function. In order to delete a coefficient from the obejctive set it to 0 (zero),Used in these examples: - GlobalObjectiveParametrics
- GoalProg
 - Parameters:
- 
          variables- Variables for which to change coefficients.
- 
          coefficients- New coefficients for variables.
- Returns:
- Always returns this instance.
- Since:
- 43.00
 
 -  chgObjNpublic XpressProblem chgObjN(int objidx, Variable variable, double coefficient) Change an objective function coefficient. This changes linear coefficient in the objective functionobjidx. In order to delete a coefficient from the obejctive set it to 0 (zero),Used in these examples: - GoalProg
 - Parameters:
- 
          objidx- Index of objective function to change,
- 
          variable- Variable for which to change coefficient.
- 
          coefficient- New coefficient for variable.
- Returns:
- Always returns this instance.
- Since:
- 43.00
 
 -  chgObjNpublic XpressProblem chgObjN(int objidx, Variable[] variables, double[] coefficients) Change objective function coefficients. This changes linear coefficients in the objective functionobjidx. In order to delete a coefficient from the obejctive set it to 0 (zero),Used in these examples: - GoalProg
 - Parameters:
- 
          objidx- Index of objective function to change,
- 
          variables- Variables for which to change coefficients.
- 
          coefficients- New coefficients for variables.
- Returns:
- Always returns this instance.
- Since:
- 43.00
 
 -  chgCoefpublic XpressProblem chgCoef(Inequality row, Variable variable, double coefficient) Changes the coefficient forvariableinrowin the linear matrix.- Parameters:
- 
          row- Inequality in which to change coefficient.
- 
          variable- Variable for which to change coefficient.
- 
          coefficient- The new coefficient.
- Returns:
- Always returns this instance.
- Since:
- 43.00
 
 -  chgCoefspublic XpressProblem chgCoefs(Inequality[] row, Variable[] variable, double[] coefficient) Change coefficients in the linear matrix. The function changes the coefficients as indicated by the triplets given byrow,variable,coefficient.- Parameters:
- 
          row- Inequality in which to change coefficient.
- 
          variable- Variable for which to change coefficient.
- 
          coefficient- The new coefficient.
- Returns:
- Always returns this instance.
- Since:
- 43.00
 
 -  repairWeightedInfeaspublic int repairWeightedInfeas(java.util.Map<Inequality,java.lang.Double> lepref, java.util.Map<Inequality,java.lang.Double> gepref, java.util.Map<Variable,java.lang.Double> lbpref, java.util.Map<Variable,java.lang.Double> ubpref, char phase2, double delta, java.lang.String flags) Repair infeasibilities using weights. By relaxing a set of selected constraints and bounds of an infeasible problem, it attempts to identify a 'solution' that violates the selected set of constraints and bounds minimally, while satisfying all other constraints and bounds. Among such solution candidates, it selects one that is optimal regarding the original objective function.Used in these examples: - Repair
 - Parameters:
- 
          lepref- Preferences for relaxing the less-than-or-equal direction of rows. Inequalities without preference will not be relaxed. Can benull.
- 
          gepref- Preferences for relaxing the greater-than-or-equal direction of rows. Inequalities without preference will not be relaxed. Can benull.
- 
          lbpref- Preferences for relaxing the lower bounds of variables. Variables without preference will not be relaxed. Can benull.
- 
          ubpref- Preferences for relaxing the upper bounds of variables. Variables without preference will not be relaxed. Can benull.
- 
          phase2- Controls the second phase of optimization.
- 
          delta- Relaxation multiplier in second phase - 1.
- 
          flags- Flags passed to the optimizer.
- Returns:
- Result status.
- Since:
- 43.00
 
 -  inequalityForIndexpublic Inequality inequalityForIndex(int index) - Since:
- 43.00
 
 -  inequalitiesForIndicespublic Inequality[] inequalitiesForIndices(int first, int last) - Since:
- 43.00
 
 -  getInequalitiespublic Inequality[] getInequalities() Get all the inequalities currently defined in this problem.- Since:
- 43.00
 
 -  delRowspublic void delRows(int nrows, int[] rowind)Delete rows from this problem. Note that this may be expensive if you usecom.dashoptimization.objects.Inequalityinstances to formulate your problem since indices of remaining rows will have to be updated after rows were deleted from the underlying model. If you have to delete multiple rows then it is best to collect all rows to be deleted in an array and then delete all of them with a single call to this function.
 -  delInequalitiespublic void delInequalities(Inequality[] rows) - Since:
- 43.00
 
 -  getSlackspublic double[] getSlacks(Inequality[] rows) Get the current slacks for an array of rows. The values in the returned array are in 1-to-1 correspondence with the rows inrows.- Since:
- 43.00
 
 -  getSlackspublic double[] getSlacks(java.util.Collection<Inequality> rows) Get the current slacks for a collection of rows. The values in the returned array are in 1-to-1 correspondence with the rows inrows.- Since:
- 43.00
 
 -  getSlackpublic double getSlack(Inequality r) Get the current slack for a single row.- Since:
- 43.00
 
 -  getDualspublic double[] getDuals(Inequality[] rows) Get the duals for an array of rows. The values in the returned array are in 1-to-1 correspondence with the rows inrows.- Since:
- 43.00
 
 -  getDualspublic double[] getDuals(java.util.Collection<Inequality> rows) Get the duals for a collection of rows. The values in the returned array are in 1-to-1 correspondence with the row inrow.- Since:
- 43.00
 
 -  getDualpublic double getDual(Inequality r) Get the dual for a single row.- Since:
- 43.00
 
 -  rhsSApublic void rhsSA(int len, Inequality[] rows, double[] lower, double[] upper)Returns upper and lower sensitivity ranges for specified right hand side (RHS) function coefficients. If the RHS coefficients are varied within these ranges the current basis remains optimal and the reduced costs remain valid.- Parameters:
- 
          len- Sensitity analysis is only performed for the firstlenelements inrows.
- 
          rows- The rows for which to perform sensitivity analysis.
- 
          lower- Array of length at leastlenthat receives the sensitivity lower bounds.
- 
          upper- Array of length at leastlenthat receives the sensitivity upper bounds.
- Since:
- 43.00
 
 -  rhsSApublic void rhsSA(Inequality[] rows, double[] lower, double[] upper) Returns upper and lower sensitivity ranges for specified right hand side (RHS) function coefficients. If the RHS coefficients are varied within these ranges the current basis remains optimal and the reduced costs remain valid.- Parameters:
- 
          rows- The rows for which to perform sensitivity analysis.
- 
          lower- Array at least as long asrowsthat receives the sensitivity lower bounds.
- 
          upper- Array at least as long asrowsthat receives the sensitivity upper bounds.
- Since:
- 43.00
 
 -  chgRHSpublic void chgRHS(Inequality[] rows, double[] newRHS) Change right-hand side for multiple rows.Used in these examples: - GlobalRHSParametrics
- Repair
 - Parameters:
- 
          rows- Inequalities for which to change right-hand sides.
- 
          newRHS- New right-hand side values.
- Since:
- 43.00
 
 -  chgRowTypepublic void chgRowType(Inequality[] rows, RowType[] rowType) Change types for multiple rows.Used in these examples: - Repair
 - Parameters:
- 
          rows- Inequalities for which to change types.
- 
          rowType- New row types.
- Since:
- 43.00
 
 -  chgRHSrangepublic void chgRHSrange(Inequality[] rows, double[] newRange) Change right-hand side ranges for multiple rows.Used in these examples: - Repair
 - Parameters:
- 
          rows- Inequalities for which to right-hand side ranges.
- 
          newRange- New right-hand side range values.
- Since:
- 43.00
 
 -  loadDelayedRowspublic void loadDelayedRows(Inequality[] rows) Marks a set of rows as delayed rows.- Parameters:
- 
          rows- Inequalities to mark as delayed.
- Since:
- 43.00
 
 -  loadModelCutspublic void loadModelCuts(Inequality[] rows) Marks a set of rows as model cuts.- Parameters:
- 
          rows- Inequalities to mark as model cuts.
- Since:
- 43.00
 
 -  addConstraintspublic <T,C extends Index> java.util.stream.Stream<java.util.Map.Entry<T,C>> addConstraints(java.util.Iterator<T> data, java.util.function.Function<T,ConstraintDefinition<C>> defs) Add multiple constraints of the same type to the problem. Calls the specified functions for each element indataand adds a constraint as specified by the return values of the functions.- Type Parameters:
- 
          T- Data type.
- 
          C- Constraint type.
- Parameters:
- 
          data- Data to generate constraints.
- 
          defs- Function to produce the constraint definitions.
- Returns:
- The created constraint indexed by data.
- Since:
- 43.00
 
 -  addConstraintpublic <C extends Index> C addConstraint(ConstraintDefinition<C> def) Add a single constraint to this problem.- Type Parameters:
- 
          C- Constraint type.
- Parameters:
- 
          def- Definition of the to add.
- Returns:
- The new constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index,T extends ConstraintDefinition<C>> java.util.stream.Stream<C> addConstraints(java.util.stream.Stream<T> defs) Add multiple constraints of the same type to the problem.- Type Parameters:
- 
          C- Constraint type.
- 
          T- Definition type.
- Parameters:
- 
          defs- The constraints to add.
- Returns:
- The new constraints.
- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index,T extends ConstraintDefinition<C>> java.util.stream.Stream<C> addConstraints(java.lang.Iterable<T> defs) Add multiple constraints of the same type to the problem.- Type Parameters:
- 
          C- Constraint type.
- 
          T- Definition type.
- Parameters:
- 
          defs- The constraints to add.
- Returns:
- The new constraints.
- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index> java.util.stream.Stream<C> addConstraints(ConstraintDefinition<C>[] defs) Add multiple of the same type constraints to the problem.- Type Parameters:
- 
          C- Constraint type.
- Parameters:
- 
          defs- The constraints to add.
- Returns:
- The new constraints.
- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index> java.util.stream.Stream<C> addConstraints(int count, java.util.function.IntFunction<ConstraintDefinition<C>> defs) Add multiple constraints of the same type to the problem. Calls the specified function for each element in[0, ..., count[and adds a constraint as specified by the return value of the function.- Type Parameters:
- 
          C- Constraint type.
- Parameters:
- 
          count- Number of constraints to add.
- 
          defs- Function to produce the constraints to add.
- Returns:
- The new constraints.
- Since:
- 43.00
 
 -  addConstraintspublic <T,C extends Index> java.util.stream.Stream<C> addConstraints(java.util.stream.Stream<T> data, java.util.function.Function<T,ConstraintDefinition<C>> defs) Add multiple constraints of the same type to the problem. Calls the specified function for each element indataand adds a constraint as specified by the return value of the function.- Type Parameters:
- 
          T- Data type.
- 
          C- Constraint type.
- Parameters:
- 
          data- Data to generate constraints.
- 
          defs- Function to generate a constraint for each data element.
- Returns:
- The new constraints.
- Since:
- 43.00
 
 -  addConstraintspublic <T,C extends Index> java.util.stream.Stream<C> addConstraints(T[] data, java.util.function.Function<T,ConstraintDefinition<C>> defs) Add multiple constraints of the same type to the problem. Calls the specified function for each element indataand adds a constraint as specified by the return value of the function.- Type Parameters:
- 
          T- Data type
- 
          C- Constraint type.
- Parameters:
- 
          data- Data to generate constraints.
- 
          defs- Function to generate a constraint for each data element.
- Returns:
- The new constraints.
- Since:
- 43.00
 
 -  addConstraintspublic <T,C extends Index> java.util.stream.Stream<C> addConstraints(java.lang.Iterable<T> data, java.util.function.Function<T,ConstraintDefinition<C>> defs) Add multiple constraints of the same type to the problem. Calls the specified function for each element indataand adds a constraint as specified by the return value of the function.- Type Parameters:
- 
          T- Data type
- 
          C- Constraint type.
- Parameters:
- 
          data- Data for the constraints.
- 
          defs- Function to generate a constraint for each data element.
- Returns:
- The new constraints.
- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index> java.util.stream.Stream<C> addConstraints(int[] data, java.util.function.IntFunction<ConstraintDefinition<C>> defs) Add multiple constraints of the same type to the problem. Calls the specified function for each element indataand adds a constraint as specified by the return value of the function.- Type Parameters:
- 
          C- Constraint type.
- Parameters:
- 
          data- Data to generate constraints.
- 
          defs- Function to generate a constraint for each data item.
- Returns:
- The new constraints.
- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index> java.util.stream.Stream<C> addConstraints(java.util.stream.IntStream data, java.util.function.IntFunction<ConstraintDefinition<C>> defs) Add multiple constraints of the same type to the problem. Calls the specified function for each element indataand adds a constraint as specified by the return value of the function.- Type Parameters:
- 
          C- Constraint type.
- Parameters:
- 
          data- Data to generate constraints.
- 
          defs- Function to generate a constraint for each data element.
- Returns:
- The new constraints.
- Since:
- 43.00
 
 -  variableForIndexpublic Variable variableForIndex(int index) - Since:
- 43.00
 
 -  variablesForIndicespublic Variable[] variablesForIndices(int first, int last) - Since:
- 43.00
 
 -  delColspublic void delCols(int ncols, int[] colind)Delete columns from this problem. Note that this may be expensive if you useVariableinstances to formulate your problem since indices of remaining variables will have to be updated after columns were deleted from the underlying model. If you have to delete multiple variables then it is best to collect all variables to be deleted in an array and then delete all of them with a single call to this function.
 -  delVariablespublic void delVariables(Variable[] vars) - Since:
- 43.00
 
 -  getSolutionpublic double[] getSolution(Variable[] vars) Get the current solution for an array of variables. The values in the returned array are in 1-to-1 correspondence with the variables invars.Used in these examples: - Polygon
- PolygonMap
- PolygonMapDelta
- PolygonMultiMap
- PolygonMultiMapDelta
- PolygonVecMap
- PolygonVecMapDelta
 - Since:
- 43.00
 
 -  getSolutionpublic double[] getSolution(java.util.Collection<Variable> vars) Get the current solution for a collection of variables. The values in the returned array are in 1-to-1 correspondence with the variables invars.Used in these examples: - Polygon
- PolygonMap
- PolygonMapDelta
- PolygonMultiMap
- PolygonMultiMapDelta
- PolygonVecMap
- PolygonVecMapDelta
 - Since:
- 43.00
 
 -  getSolutionpublic double getSolution(Variable v) Get the current solution for a single variable.Used in these examples: - Polygon
- PolygonMap
- PolygonMapDelta
- PolygonMultiMap
- PolygonMultiMapDelta
- PolygonVecMap
- PolygonVecMapDelta
 - Since:
- 43.00
 
 -  getRedCostspublic double[] getRedCosts(Variable[] vars) Get the reduced costs for an array of variables. The values in the returned array are in 1-to-1 correspondence with the variables invars.- Since:
- 43.00
 
 -  getRedCostspublic double[] getRedCosts(java.util.Collection<Variable> vars) Get the reduced costs for a collection of variables. The values in the returned array are in 1-to-1 correspondence with the variables invars.- Since:
- 43.00
 
 -  getRedCostpublic double getRedCost(Variable v) Get the reduced cost for a single variable.- Since:
- 43.00
 
 -  objSApublic void objSA(int len, Variable[] variables, double[] lower, double[] upper)Returns upper and lower sensitivity ranges for specified objective function coefficients. If the objective coefficients are varied within these ranges the current basis remains optimal and the reduced costs remain valid.- Parameters:
- 
          len- Sensitivity analysis is performed only on the firstlenvariables invariables.
- 
          variables- Variables on which to perform sensitivity analysis.
- 
          lower- Array of length at leastlenthat receives the sensitivity analysis lower bounds.
- 
          upper- Array of length at leastlenthat receives the sensitivity analysis upper bounds.
- Since:
- 43.00
 
 -  objSApublic void objSA(Variable[] variables, double[] lower, double[] upper) Returns upper and lower sensitivity ranges for specified objective function coefficients. If the objective coefficients are varied within these ranges the current basis remains optimal and the reduced costs remain valid.- Parameters:
- 
          variables- Variables on which to perform sensitivity analysis.
- 
          lower- Array at least as long asvariablesthat receives the sensitivity analysis lower bounds.
- 
          upper- Array at least as long asvariablesthat receives the sensitivity analysis upper bounds.
- Since:
- 43.00
 
 -  bndSApublic void bndSA(int len, Variable[] variables, double[] lblower, double[] lbupper, double[] ublower, double[] ubupper)Returns upper and lower sensitivity ranges for specified variables' lower and upper bounds. If the bounds are varied within these ranges the current basis remains optimal and feasible.- Parameters:
- 
          len- Sensitivity analysis is performed only on the firstlenvariables invariables.
- 
          variables- Variables on which to perform sensitivity analysis.
- 
          lblower- Array of length at leastlenthat receives the sensitivity analysis lower bounds for the variables' lower bound constraints.
- 
          lbupper- Array of length at leastlenthat receives the sensitivity analysis upper bounds for the variables' lower bound constraints.
- 
          ublower- Array of length at leastlenthat receives the sensitivity analysis lower bounds for the variables' upper bound constraints.
- 
          ubupper- Array of length at leastlenthat receives the sensitivity analysis upper bounds for the variables' upper bound constraints.
- Since:
- 43.00
 
 -  bndSApublic void bndSA(Variable[] variables, double[] lblower, double[] lbupper, double[] ublower, double[] ubupper) Returns upper and lower sensitivity ranges for specified variables' lower and upper bounds. If the bounds are varied within these ranges the current basis remains optimal and feasible.- Parameters:
- 
          variables- Variables on which to perform sensitivity analysis.
- 
          lblower- Array at least as long asvariablesthat receives the sensitivity analysis lower bounds for the variables' lower bound constraints.
- 
          lbupper- Array at least as long asvariablesthat receives the sensitivity analysis upper bounds for the variables' lower bound constraints.
- 
          ublower- Array at least as long asvariablesthat receives the sensitivity analysis lower bounds for the variables' upper bound constraints.
- 
          ubupper- Array at least as long asvariablesthat receives the sensitivity analysis upper bounds for the variables' upper bound constraints.
- Since:
- 43.00
 
 -  addMipSolpublic void addMipSol(double[] values, Variable[] variables, java.lang.String name)Adds a new feasible, infeasible or partial MIP solution for the problem to the Optimizer.Used in these examples: - AddMipSol
- TSP
 - Parameters:
- 
          values- Values forvariables.
- 
          variables- Variables in the solution.
- 
          name- Name for solution, can benull.
- Since:
- 43.00
 
 -  getVariablespublic Variable[] getVariables() Get all the variables currently defined in this problem.- Since:
- 43.00
 
 -  chgBoundspublic void chgBounds(Variable[] variables, byte[] bndType, double[] bndValue) Change bounds for multiple variables.Used in these examples: - AddMipSol
- FixBV
- RoundInt
 - Parameters:
- 
          variables- Variables for which to change bounds.
- 
          bndType- Type of bounds to change.
- 
          bndValue- New bounds.
- Since:
- 43.00
 
 -  chgColTypepublic void chgColType(Variable[] variables, ColumnType[] colType) Change types for multiple variables.Used in these examples: - Trimloss
 - Parameters:
- 
          variables- Variables for which to change types.
- 
          colType- New column types.
- Since:
- 43.00
 
 -  getInequalityLinearpublic LinTermList getInequalityLinear(Inequality row) Get the linear part of the left-hand side of a row.- Parameters:
- 
          row- The row for which the linear part is queried.
- Returns:
- The linear part of the row. This is guaranteed to not have any duplicates.
- Since:
- 43.00
 
 -  getInequalityLinearpublic LinExpression getInequalityLinear(Inequality row, java.util.function.Supplier<LinExpression> expression) Get the linear part of the left-hand side of a row. The function adds the linear part ofrowto the expression provided byexpression. Ifexpressionisnullthen the function allocates a newcom.dashoptimization.objects.LinTermListfor it. If the function allocates a newcom.dashoptimization.objects.LinTermListthen it also returns that new object. In that case the list is guaranteed to not have any duplicates.- Parameters:
- 
          row- The row for which the linear part is queried.
- 
          expression- Creates the expression that is returned by this function. Can benullin which case a newcom.dashoptimization.objects.LinTermListis created.
- Returns:
- An expression that represent the linear part of the given row.
- Since:
- 43.00
 
 -  getCoefpublic double getCoef(Inequality row, Variable variable) Query a single coefficient from the linear matrix. Retrieves the coefficient ofvariableinrowin the linear matrix. Note that the coefficient will be 0 (zero) in case the variable has no coefficient in that row.- Parameters:
- 
          row- The row in which to query the coefficient.
- 
          variable- The variable for which to query the coefficient.
- Returns:
- The queried coefficient.
- Since:
- 43.00
 
 -  getObjpublic double getObj(Variable variable) Query an objective function coefficient. Retrieves the linear objective coefficient for the specified variable from the first/primary objective.Used in these examples: - Knapsack
 - Parameters:
- 
          variable- The variable for which to query the objective.
- Returns:
- 
          The objective coefficient for 
          variable.
- Since:
- 43.00
 
 -  getObjNpublic double getObjN(int objidx, Variable variable)Query an objective function coefficient. Retrieves the linear objective coefficient for the specified variable from objectiveobjidx.- Parameters:
- 
          objidx- objects.Index of objective function to query.
- 
          variable- The variable for which to query the objective.
- Returns:
- 
          The objective coefficient for 
          variable.
- Since:
- 43.00
 
 -  pwlForIndexpublic PWL pwlForIndex(int index) - Since:
- 43.00
 
 -  pwlsForIndicespublic PWL[] pwlsForIndices(int first, int last) - Since:
- 43.00
 
 -  delPwlConspublic void delPwlCons(int npwls, int[] pwlind)Delete piecewise linear constraints from this problem. Note that this may be expensive if you usePWLinstances to formulate your problem since indices of remaining variables will have to be updated after columns were deleted from the underlying model. If you have to delete multiple variables then it is best to collect all variables to be deleted in an array and then delete all of them with a single call to this function.- Overrides:
- 
          delPwlConsin classXPRSprob
- Parameters:
- 
          npwls- Number of constraints to delete.
- 
          pwlind- Indices of constraints to delete.
- Since:
- 43.00
 
 -  delPwlConstraintspublic void delPwlConstraints(PWL[] pwls) - Since:
- 43.00
 
 -  getGeneralConstraintspublic GeneralConstraint[] getGeneralConstraints() Get all the general constraints currently defined in this problem.- Returns:
- All general constraints in this problem.
- Since:
- 43.00
 
 -  generalConstraintForIndexpublic GeneralConstraint generalConstraintForIndex(int index) Map a general constraint index to aGeneralConstraintobject.- Parameters:
- 
          index- The index to map.
- Returns:
- 
          The 
          GeneralConstraintobject forindex.
- Since:
- 43.00
 
 -  generalConstraintForIndicespublic GeneralConstraint[] generalConstraintForIndices(int first, int last) Map a range of general constraint indices toGeneralConstraintobjects.- Parameters:
- 
          first- First index in range (inclusive).
- 
          last- Last index in range (inclusive).
- Returns:
- 
          The 
          GeneralConstraintobjects in the specified range.
- Since:
- 43.00
 
 -  delGenConspublic void delGenCons(int nconstraints, int[] conind)Delete constraints from this problem. Note that this may be expensive if you useGeneralConstraintinstances to formulate your problem since indices of remaining constraints will have to be updated after constraints were deleted from the underlying model. If you have to delete multiple constraints then it is best to collect all constraints to be deleted in an array and then delete all of them with a single call to this function.- Overrides:
- 
          delGenConsin classXPRSprob
- Parameters:
- 
          nconstraints- Number of constraints to delete.
- 
          conind- Indices of constraints to delete.
- Since:
- 43.00
 
 -  delGeneralConstraintspublic void delGeneralConstraints(GeneralConstraint[] constraints) Delete general constraints.- Parameters:
- 
          constraints- The constraints to be deleted.
- Since:
- 43.00
 
 -  getIISpublic IIS getIIS(int iis) Get the specified IIS.- Parameters:
- 
          iis- The index of the IIS for which data is queried.
- Returns:
- 
          The IIS specified by 
          iis.
- Since:
- 43.00
 
 -  isOriginalpublic boolean isOriginal() Check whether this model instance is in the original state. A model is not in the original state if it is a callback problem or its problem state indicates being presolved.Used in these examples: - MostViolated
 - Since:
- 43.00
 
 -  addCutpublic int addCut(int cuttype, Inequality.Definition cut)Add a cut at the current node. It is assumed that the left-hand side (lhs) is formulated in terms of the original model. So you can useVariableinstances to formulate it. When using plain variable indices, be sure these indices are for the original model. The function will automatically transform (presolve) the cut to the presolved space. If presolving the cut fails then the cut is not added and the reason for failure is returned. Failing to presolve (and thus adding) a cut is not a problem in every context. That is why this does not raise an exception but instead leaves it to the caller to decide whether this is an error or not.Used in these examples: - TSP
 - Parameters:
- 
          cuttype- User defined cut type.
- 
          cut- The inequality to add as cut.
- Returns:
- 
          0 (zero) if the cut was successfully added. Otherwise the status code from 
          presolveRowthat indicates why the cut could not be presolved. It is up to the caller to decide whether not being able to presolve the cut is a problem or not.
- Since:
- 43.00
 
 -  createBranchObjectpublic XpressProblem.BranchObject createBranchObject() Create a new branch object. This is different from the super class's createBranchObject() function in two aspects: - it returns an instance ofBranchObject, notXPRSbranchobject. The format is a subclass of the latter and has functions to add bounds and constraints that referenceVariableobjects. - the returned object always operates in the original space.Used in these examples: - MostViolated
 - Since:
- 43.00
 
 -  setObjectivepublic void setObjective(Expression obj) Set the objective function to a new expression.Used in these examples: - TSP
 - Parameters:
- 
          obj- The new objective
- Since:
- 43.00
 
 -  setObjectivepublic void setObjective(Expression obj, XPRSenumerations.ObjSense sense) Set the objective function to a new expression.Used in these examples: - TSP
 - Parameters:
- 
          obj- The new objective
- 
          sense- The new objective sense (minimize or maximize).
- Since:
- 43.00
 
 -  addObjectivepublic void addObjective(Expression obj, int priority, double weight) Add a new objective function. This turns the problem into a multi-objective problem.- Parameters:
- 
          obj- The new objective
- 
          priority- Priority for new objective.
- 
          weight- Weight for new objective.
- Since:
- 43.00
 
 -  setObjectivepublic void setObjective(int idx, Expression obj, int priority, double weight, double abstol, double reltol)Set an objective function and its controls. In case of error: - if the function created new objectives then all newly created objectives will be removed, - if an existing objective was modified then that objective function will be cleared and all controls will be unchanged.Used in these examples: - TSP
 - Parameters:
- 
          idx- Index of objective to set.
- 
          obj- New objective foridx.
- 
          priority- New objective priority.
- 
          weight- New objective weight.
- 
          abstol- New absolute tolerance for objectiveidx.
- 
          reltol- New relative tolerance for objectiveidx.
- Since:
- 43.00
 
 -  nlpSetInitValpublic void nlpSetInitVal(java.util.Map<Variable,java.lang.Double> values) Set initial values of variables for a non-linear solve.- Parameters:
- 
          values- Values to be set. For each variable/value pair in this map the corresponding initial value is set.
- Since:
- 43.00
 
 -  nlpSetInitValpublic void nlpSetInitVal(Variable[] variables, double[] values) Set initial values of variables for a non-linear solve.- Parameters:
- 
          variables- Variables for which to set values.
- 
          values- Values forvariables. This must have the same length asvariables. The initial value forvariables[i]isvalues[i].
- Since:
- 43.00
 
 -  getLhsExpressionpublic Expression getLhsExpression(int row) Get the left-hand side of a row as an expression.- Parameters:
- 
          row- Index of row to fetch.
- Returns:
- 
          The left-hand side of row 
          row.
- Since:
- 43.00
 
 -  sosForIndexpublic SOS sosForIndex(int index) - Since:
- 43.00
 
 -  sosForIndicespublic SOS[] sosForIndices(int first, int last) - Since:
- 43.00
 
 -  delSetspublic void delSets(int nsets, int[] sosind)Delete sets from this problem. Note that this may be expensive if you useSOSinstances to formulate your problem since indices of remaining sets will have to be updated after sets were deleted from the underlying model. If you have to delete multiple sets then it is best to collect all sets to be deleted in an array and then delete all of them with a single call to this function.
 -  delSOSpublic void delSOS(SOS[] soss) Delete special ordered set constraints. Removes all the specified special ordered set constraints from this problem.- Parameters:
- 
          soss- SOS to be deleted.
- Since:
- 43.00
 
 -  delSOSpublic void delSOS(SOS sos) Delete a single SOS from the problem.- Parameters:
- 
          sos- SOS to delete.
- Since:
- 43.00
 
 -  delIndicatorpublic void delIndicator(Inequality row) Delete a single indicator constraint. This only deletes the "indicator property from the specified row. Neither the associated variable nor the row are deleted.- Parameters:
- 
          row- Row from which to delete the indicator constraint.
- Since:
- 43.00
 
 -  getIndicatorpublic IndicatorObjects getIndicator(Inequality row) Get indicator information for a single row.- Parameters:
- 
          row- The row to query.
- Returns:
- 
          Indicator information for 
          row. This will benullifrowis not an indicator row.
- Since:
- 43.00
 
 -  setIndicatorpublic void setIndicator(Variable indicatorVariable, boolean indicatorValue, Inequality row) Add an indicator constraint to this model. Both variable and row must exist.- Parameters:
- 
          indicatorVariable- Indicator variable.
- 
          indicatorValue- Whetherrowbecomes active ifindicatorVariableis non-zero (indicatorValueistrue) or ifindicatorVariableis zero (indicatorValueisfalse).
- 
          row- The implied row for the indicator constraint.
- Since:
- 43.00
 
 -  setIndicatorspublic void setIndicators(Variable[] indicatorVariable, boolean[] indicatorValue, Inequality[] row) Add indicator constraints to this model. The provided arrays must all have length at leastcountand for anyiin 0..count-1an indicator constraint is constructed fromindicatorVariable[i],indicatorValue[i]androw[i]. IfindicatorValue[i]istruethen the constraints states that ifindicatorVariable[i]is 1 (one), thenrow[i]must be satisfied (and ifindicatoris 0 (zero) thenrow[i]is ignored). Otherwise,row[i]must be satisfied ifindicator[i]is 0 (zero) and is ignored otherwise. All referenced variables and rows must exist.- Parameters:
- 
          indicatorVariable- Indicator variables.
- 
          indicatorValue- Whether rows become active if indicator variables are non-zero (indicatorValue[.]istrue) or if indicator variables are zero (indicatorValueisfalse). If this isnullthen rows become active if indicator variables are non-zero.
- 
          row- The implied rows for the indicator constraints.
- Since:
- 43.00
 
 -  setIndicatorspublic <T> void setIndicators(java.lang.Iterable<T> data, java.util.function.Function<T,Variable> indicatorVariable, java.util.function.Function<T,java.lang.Boolean> indicatorValue, java.util.function.Function<T,Inequality> row)Add indicator constraints to this model. The function iterates throughdataand calls the provided functions for each element found. The return values of the functions are used to construct an indicator constraint. For a fixedt, ifindicatorValue(t)returnstruethen the created constraint states that ifindicatorVariable(t)is 1 (one), thenrow(t)must be satisfied and is ignored otherwise. Otherwise,row(t)must be satisfied ifindicatorVariable(t)is 0 (zero) and is ignored otherwise. All referenced variables and rows must exist.- Type Parameters:
- 
          T- Data type.
- Parameters:
- 
          data- Data for which constraints are created.
- 
          indicatorVariable- Indicator variables.
- 
          indicatorValue- Whether indicator variables should be non-zero or zero for rows to become active. If this isnullthen none of the variables must be 1 (one) for rows to become active.
- 
          row- The implied rows for the indicator constraints.
- Since:
- 43.00
 
 -  setIndicatorspublic <T> void setIndicators(T[] data, java.util.function.Function<T,Variable> indicatorVariable, java.util.function.Function<T,java.lang.Boolean> indicatorValue, java.util.function.Function<T,Inequality> row)Add indicator constraints to this model. The function iterates throughdataand calls the provided functions for each element found. The return values of the functions are used to construct an indicator constraint. For a fixedt, ifindicatorValue(t)returnstruethen the created constraint states that ifindicatorVariable(t)is 1 (one), thenrow(t)must be satisfied and is ignored otherwise. Otherwise,row(t)must be satisfied ifindicatorVariable(t)is 0 (zero) and is ignored otherwise. All referenced variables and rows must exist.- Type Parameters:
- 
          T- Data type.
- Parameters:
- 
          data- Data for which constraints are created.
- 
          indicatorVariable- Indicator variables.
- 
          indicatorValue- Whether indicator variables should be non-zero or zero for rows to become active. If this isnullthen none of the variables must be 1 (one) for rows to become active.
- 
          row- The implied rows for the indicator constraints.
- Since:
- 43.00
 
 -  setIndicatorspublic <T> void setIndicators(java.util.Collection<T> data, java.util.function.Function<T,Variable> indicatorVariable, java.util.function.Function<T,java.lang.Boolean> indicatorValue, java.util.function.Function<T,Inequality> row)Add indicator constraints to this model. The function iterates throughdataand calls the provided functions for each element found. The return values of the functions are used to construct an indicator constraint. For a fixedt, ifindicatorValue(t)returnstruethen the created constraint states that ifindicatorVariable(t)is 1 (one), thenrow(t)must be satisfied and is ignored otherwise. Otherwise,row(t)must be satisfied ifindicatorVariable(t)is 0 (zero) and is ignored otherwise. All referenced variables and rows must exist.- Type Parameters:
- 
          T- Data type.
- Parameters:
- 
          data- Data for which constraints are created.
- 
          indicatorVariable- Indicator variables.
- 
          indicatorValue- Whether indicator variables should be non-zero or zero for rows to become active. If this isnullthen none of the variables must be 1 (one) for rows to become active.
- 
          row- The implied rows for the indicator constraints.
- Since:
- 43.00
 
 -  setIndicatorspublic <T> void setIndicators(java.util.stream.Stream<T> data, java.util.function.Function<T,Variable> indicatorVariable, java.util.function.Function<T,java.lang.Boolean> indicatorValue, java.util.function.Function<T,Inequality> row)Add indicator constraints to this model. The function iterates throughdataand calls the provided functions for each element found. The return values of the functions are used to construct an indicator constraint. For a fixedt, ifindicatorValue(t)returnstruethen the created constraint states that ifindicatorVariable(t)is 1 (one), thenrow(t)must be satisfied and is ignored otherwise. Otherwise,row(t)must be satisfied ifindicatorVariable(t)is 0 (zero) and is ignored otherwise. All referenced variables and rows must exist.- Type Parameters:
- 
          T- Data type.
- Parameters:
- 
          data- Data for which constraints are created.
- 
          indicatorVariable- Indicator variables.
- 
          indicatorValue- Whether indicator variables should be non-zero or zero for rows to become active. If this isnullthen none of the variables must be 1 (one) for rows to become active.
- 
          row- The implied rows for the indicator constraints.
- Since:
- 43.00
 
 -  setIndicatorspublic void setIndicators(int count, java.util.function.Function<java.lang.Integer,Variable> indicatorVariable, java.util.function.Function<java.lang.Integer,java.lang.Boolean> indicatorValue, java.util.function.Function<java.lang.Integer,Inequality> row)Add indicator constraints to this model. The function iterates through[0, ... ,count[and calls the provided functions for each in this interval. The return values of the functions are used to construct an indicator constraint. For a fixedt, ifindicatorValue(t)returnstruethen the created constraint states that ifindicatorVariable(t)is 1 (one), thenrow(t)must be satisfied and is ignored otherwise. Otherwise,row(t)must be satisfied ifindicatorVariable(t)is 0 (zero) and is ignored otherwise. All referenced variables and rows must exist.- Parameters:
- 
          count- How many constraint to add.
- 
          indicatorVariable- Indicator variables.
- 
          indicatorValue- Whether indicator variables should be non-zero or zero for rows to become active. If this isnullthen none of the variables must be 1 (one) for rows to become active.
- 
          row- The implied rows for the indicator constraints.
- Since:
- 43.00
 
 -  setIndicatorspublic void setIndicators(int[] data, java.util.function.IntFunction<Variable> indicatorVariable, java.util.function.IntFunction<java.lang.Boolean> indicatorValue, java.util.function.IntFunction<Inequality> row)Add indicator constraints to this model. The function iterates throughdataand calls the provided functions for each element found. The return values of the functions are used to construct an indicator constraint. For a fixedt, ifindicatorValue(t)returnstruethen the created constraint states that ifindicatorVariable(t)is 1 (one), thenrow(t)must be satisfied and is ignored otherwise. Otherwise,row(t)must be satisfied ifindicatorVariable(t)is 0 (zero) and is ignored otherwise. All referenced variables and rows must exist.- Parameters:
- 
          data- Data for which constraints are created.
- 
          indicatorVariable- Indicator variables.
- 
          indicatorValue- Whether indicator variables should be non-zero or zero for rows to become active. If this isnullthen none of the variables must be 1 (one) for rows to become active.
- 
          row- The implied rows for the indicator constraints.
- Since:
- 43.00
 
 -  setIndicatorspublic void setIndicators(java.util.stream.IntStream data, java.util.function.IntFunction<Variable> indicatorVariable, java.util.function.IntFunction<java.lang.Boolean> indicatorValue, java.util.function.IntFunction<Inequality> row)Add indicator constraints to this model. The function iterates throughdataand calls the provided functions for each element found. The return values of the functions are used to construct an indicator constraint. For a fixedt, ifindicatorValue(t)returnstruethen the created constraint states that ifindicatorVariable(t)is 1 (one), thenrow(t)must be satisfied and is ignored otherwise. Otherwise,row(t)must be satisfied ifindicatorVariable(t)is 0 (zero) and is ignored otherwise. All referenced variables and rows must exist.- Parameters:
- 
          data- Data for which constraints are created.
- 
          indicatorVariable- Indicator variables.
- 
          indicatorValue- Whether indicator variables should be non-zero or zero for rows to become active. If this isnullthen none of the variables must be 1 (one) for rows to become active.
- 
          row- The implied rows for the indicator constraints.
- Since:
- 43.00
 
 -  sortParallelArrayspublic static <T extends java.lang.Comparable<T>> void sortParallelArrays(T[] mvec, double[] dvec, int offset, int size)Sort parallel arrays according to index keys.- Since:
- 43.00
 
 -  sortParallelArrayspublic static <T extends java.lang.Comparable<T>> void sortParallelArrays(T[] key1, T[] key2, double[] dvec, int offset, int size)Sort parallel arrays according to integer pair keys.- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index> void addConstraints(int count1, int count2, java.util.function.BiFunction<java.lang.Integer,java.lang.Integer,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of[0,count1[, ..., [0,countN[and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          C- The type of constraints.
- Parameters:
- 
          count1- Length of dimension 1.
- 
          count2- Length of dimension 2.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <K1,K2,C extends Index> void addConstraints(java.lang.Iterable<K1> iterable1, java.lang.Iterable<K2> iterable2, java.util.function.BiFunction<K1,K2,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of the iterables and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          K1- Data for dimension 1.
- 
          K2- Data for dimension 2.
- 
          C- The type of constraints.
- Parameters:
- 
          iterable1- Keys for dimension 1.
- 
          iterable2- Keys for dimension 2.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <K1,K2,C extends Index> void addConstraints(K1[] array1, K2[] array2, java.util.function.BiFunction<K1,K2,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of the arrays and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          K1- Data for dimension 1.
- 
          K2- Data for dimension 2.
- 
          C- The type of constraints.
- Parameters:
- 
          array1- Data for dimension 1.
- 
          array2- Data for dimension 2.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index> void addConstraints(int count1, int count2, int count3, Function3<java.lang.Integer,java.lang.Integer,java.lang.Integer,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of[0,count1[, ..., [0,countN[and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          C- The type of constraints.
- Parameters:
- 
          count1- Length of dimension 1.
- 
          count2- Length of dimension 2.
- 
          count3- Length of dimension 3.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <K1,K2,K3,C extends Index> void addConstraints(java.lang.Iterable<K1> iterable1, java.lang.Iterable<K2> iterable2, java.lang.Iterable<K3> iterable3, Function3<K1,K2,K3,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of the iterables and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          K1- Data for dimension 1.
- 
          K2- Data for dimension 2.
- 
          K3- Data for dimension 3.
- 
          C- The type of constraints.
- Parameters:
- 
          iterable1- Keys for dimension 1.
- 
          iterable2- Keys for dimension 2.
- 
          iterable3- Keys for dimension 3.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <K1,K2,K3,C extends Index> void addConstraints(K1[] array1, K2[] array2, K3[] array3, Function3<K1,K2,K3,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of the arrays and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          K1- Data for dimension 1.
- 
          K2- Data for dimension 2.
- 
          K3- Data for dimension 3.
- 
          C- The type of constraints.
- Parameters:
- 
          array1- Data for dimension 1.
- 
          array2- Data for dimension 2.
- 
          array3- Data for dimension 3.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index> void addConstraints(int count1, int count2, int count3, int count4, Function4<java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of[0,count1[, ..., [0,countN[and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          C- The type of constraints.
- Parameters:
- 
          count1- Length of dimension 1.
- 
          count2- Length of dimension 2.
- 
          count3- Length of dimension 3.
- 
          count4- Length of dimension 4.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <K1,K2,K3,K4,C extends Index> void addConstraints(java.lang.Iterable<K1> iterable1, java.lang.Iterable<K2> iterable2, java.lang.Iterable<K3> iterable3, java.lang.Iterable<K4> iterable4, Function4<K1,K2,K3,K4,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of the iterables and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          K1- Data for dimension 1.
- 
          K2- Data for dimension 2.
- 
          K3- Data for dimension 3.
- 
          K4- Data for dimension 4.
- 
          C- The type of constraints.
- Parameters:
- 
          iterable1- Keys for dimension 1.
- 
          iterable2- Keys for dimension 2.
- 
          iterable3- Keys for dimension 3.
- 
          iterable4- Keys for dimension 4.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <K1,K2,K3,K4,C extends Index> void addConstraints(K1[] array1, K2[] array2, K3[] array3, K4[] array4, Function4<K1,K2,K3,K4,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of the arrays and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          K1- Data for dimension 1.
- 
          K2- Data for dimension 2.
- 
          K3- Data for dimension 3.
- 
          K4- Data for dimension 4.
- 
          C- The type of constraints.
- Parameters:
- 
          array1- Data for dimension 1.
- 
          array2- Data for dimension 2.
- 
          array3- Data for dimension 3.
- 
          array4- Data for dimension 4.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <C extends Index> void addConstraints(int count1, int count2, int count3, int count4, int count5, Function5<java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of[0,count1[, ..., [0,countN[and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          C- The type of constraints.
- Parameters:
- 
          count1- Length of dimension 1.
- 
          count2- Length of dimension 2.
- 
          count3- Length of dimension 3.
- 
          count4- Length of dimension 4.
- 
          count5- Length of dimension 5.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <K1,K2,K3,K4,K5,C extends Index> void addConstraints(java.lang.Iterable<K1> iterable1, java.lang.Iterable<K2> iterable2, java.lang.Iterable<K3> iterable3, java.lang.Iterable<K4> iterable4, java.lang.Iterable<K5> iterable5, Function5<K1,K2,K3,K4,K5,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of the iterables and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          K1- Data for dimension 1.
- 
          K2- Data for dimension 2.
- 
          K3- Data for dimension 3.
- 
          K4- Data for dimension 4.
- 
          K5- Data for dimension 5.
- 
          C- The type of constraints.
- Parameters:
- 
          iterable1- Keys for dimension 1.
- 
          iterable2- Keys for dimension 2.
- 
          iterable3- Keys for dimension 3.
- 
          iterable4- Keys for dimension 4.
- 
          iterable5- Keys for dimension 5.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  addConstraintspublic <K1,K2,K3,K4,K5,C extends Index> void addConstraints(K1[] array1, K2[] array2, K3[] array3, K4[] array4, K5[] array5, Function5<K1,K2,K3,K4,K5,ConstraintDefinition<C>> makeConstraint) Add multiple constraints to this problem. CallsmakeConstraintfor each element in the cartesian product of the arrays and adds the constraint that is produced by this function call. A deep copy is made of each constraint, thus modifying the constraint later will not alter the model.- Type Parameters:
- 
          K1- Data for dimension 1.
- 
          K2- Data for dimension 2.
- 
          K3- Data for dimension 3.
- 
          K4- Data for dimension 4.
- 
          K5- Data for dimension 5.
- 
          C- The type of constraints.
- Parameters:
- 
          array1- Data for dimension 1.
- 
          array2- Data for dimension 2.
- 
          array3- Data for dimension 3.
- 
          array4- Data for dimension 4.
- 
          array5- Data for dimension 5.
- 
          makeConstraint- Function to generate a constraint.
- Since:
- 43.00
 
 -  buildVariablespublic Variable[] buildVariables(VariableBuilder.ArrayBuilder builder) Create a variable array from a builder.- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I> I buildVariables(VariableBuilder.ArrayBuilder builder, java.util.function.Supplier<I> makeResult, Action3<I,java.lang.Integer,Variable> addResult) Create a variable array from a builder. This is a parametrized version ofbuildVariables(VariableBuilder.ArrayBuilder).- Type Parameters:
- 
          I- Type for object that stores the created variables.
- Parameters:
- 
          builder- Builder to create variables.
- 
          makeResult- Function to create the (empty) result.
- 
          addResult- Function to add a variable to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  buildVariablespublic <K1> java.util.HashMap<K1,Variable> buildVariables(VariableBuilder.MapBuilder<K1> builder) Create a variable map from a builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created Variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I,K1> I buildVariables(VariableBuilder.MapBuilder<K1> builder, java.util.function.Supplier<I> makeResult, Action3<I,K1,Variable> addResult) Create a variable map from a builder.- Type Parameters:
- 
          I- Type of result
- 
          K1- Data type for dimension 1.
- Parameters:
- 
          builder- The builder to create variables.
- 
          makeResult- Function to create an (empty) result.
- 
          addResult- Function to add an element to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  addVariablespublic VariableBuilder.VariableArrayBuilder addVariables(int dim) Create an 1 dimensional array of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoArray()function.// Create a multi-dimensional array of binary variables Variable [] = prob.addColumns(dim) .withType(com.dashoptimization.objects.ColumnType.Binary) .toArray();SeeVariableBuilder.VariableArrayBuilderfor details of how to modify the specification in the builder.- Parameters:
- 
          dim- Dimension.
- Returns:
- A builder that will create the variables.
- Since:
- 43.00
 
 -  addVariablespublic <K1> VariableBuilder.VariableMapBuilder<K1> addVariables(java.util.Collection<K1> coll1) Create an 1 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns java.util.HashMap<K1 ,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMapBuilderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- Parameters:
- 
          coll1- Data for dimension 1.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  addVariablespublic <K1> VariableBuilder.VariableMapBuilder<K1> addVariables(K1[] arr1) Create an 1 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns java.util.HashMap<K1 ,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMapBuilderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- Parameters:
- 
          arr1- Data for the builder.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  addVariablespublic <K1> VariableBuilder.VariableMapBuilder<K1> addVariables(java.util.stream.Stream<K1> strm) Create an 1 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns java.util.HashMap<K1 ,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMapBuilderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  addVariablepublic Variable addVariable(double lb, double ub, ColumnType type, java.lang.String name) Add a single variable to this problem.- Parameters:
- 
          lb- Lower bound for new variable.
- 
          ub- Upper bound for new variable.
- 
          type- Type for new variable.
- 
          name- Name for new variable, can benull.
- Returns:
- The newly created variable.
- Since:
- 43.00
 
 -  addVariablepublic Variable addVariable(double lb, double ub, ColumnType type, double limit, java.lang.String name) Add a single variable to this problem.- Parameters:
- 
          lb- Lower bound for new variable.
- 
          ub- Upper bound for new variable.
- 
          type- Type for new variable.
- 
          limit- Global limit for the variable. This is ignored unless the variable is semi-continuous, semi-integer or partial integer.
- 
          name- Name for new variable, can benull.
- Returns:
- The newly created variable.
- Since:
- 43.00
 
 -  addVariablepublic Variable addVariable(double lb, double ub, ColumnType type) Add a single variable to this problem.- Parameters:
- 
          lb- Lower bound for new variable.
- 
          ub- Upper bound for new variable.
- 
          type- Type for new variable.
- Returns:
- The newly created variable.
- Since:
- 43.00
 
 -  addVariablepublic Variable addVariable(java.lang.String name) Add a single variable to this problem. The variable will have default type (continuous) and bounds (0 and infinity).- Parameters:
- 
          name- Name for new variable.
- Returns:
- The newly created variable.
- Since:
- 43.00
 
 -  addVariablepublic Variable addVariable(ColumnType type) Add a single variable to this problem. The variable will have default bounds and no name.- Parameters:
- 
          type- Type for new variable.
- Returns:
- The newly created variable.
- Since:
- 43.00
 
 -  addVariablepublic Variable addVariable(ColumnType type, java.lang.String name) Add a single variable to this problem. The variable will have default bounds.- Parameters:
- 
          type- Type for new variable.
- 
          name- Name for new variable.
- Returns:
- The newly created variable.
- Since:
- 43.00
 
 -  addVariablepublic Variable addVariable() Add a single variable to this problem. This variable will be continuous, have default bounds (0 and infinity) and will not have a name.- Returns:
- The newly created variable.
- Since:
- 43.00
 
 -  buildVariablespublic Variable[][] buildVariables(VariableBuilder.Array2Builder builder) Create a variable array from a builder.- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I> I buildVariables(VariableBuilder.Array2Builder builder, java.util.function.Supplier<I> makeResult, Action4<I,java.lang.Integer,java.lang.Integer,Variable> addResult) Create a variable array from a builder. This is a parametrized version ofbuildVariables(VariableBuilder.Array2Builder).- Type Parameters:
- 
          I- Type for object that stores the created variables.
- Parameters:
- 
          builder- Builder to create variables.
- 
          makeResult- Function to create the (empty) result.
- 
          addResult- Function to add a variable to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  buildVariablespublic <K1,K2> HashMap2<K1,K2,Variable> buildVariables(VariableBuilder.Map2Builder<K1,K2> builder) Create a variable map from a builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created Variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I,K1,K2> I buildVariables(VariableBuilder.Map2Builder<K1,K2> builder, java.util.function.Supplier<I> makeResult, Action4<I,K1,K2,Variable> addResult) Create a variable map from a builder.- Type Parameters:
- 
          I- Type of result
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- Parameters:
- 
          builder- The builder to create variables.
- 
          makeResult- Function to create an (empty) result.
- 
          addResult- Function to add an element to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  addVariablespublic VariableBuilder.VariableArray2Builder addVariables(int dim1, int dim2) Create an 2 dimensional array of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoArray()function.// Create a multi-dimensional array of binary variables Variable [] [] = prob.addColumns(dim1 ,dim2) .withType(com.dashoptimization.objects.ColumnType.Binary) .toArray();SeeVariableBuilder.VariableArray2Builderfor details of how to modify the specification in the builder.- Parameters:
- 
          dim1- Dimension 1.
- 
          dim2- Dimension 2.
- Returns:
- A builder that will create the variables.
- Since:
- 43.00
 
 -  addVariablespublic <K1,K2> VariableBuilder.VariableMap2Builder<K1,K2> addVariables(java.util.Collection<K1> coll1, java.util.Collection<K2> coll2) Create an 2 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns com.dashoptimization.maps.HashMap2<K1 ,K2,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ,coll2) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMap2Builderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- Parameters:
- 
          coll1- Data for dimension 1.
- 
          coll2- Data for dimension 2.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  addVariablespublic <K1,K2> VariableBuilder.VariableMap2Builder<K1,K2> addVariables(K1[] arr1, K2[] arr2) Create an 2 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns com.dashoptimization.maps.HashMap2<K1 ,K2,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ,coll2) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMap2Builderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- Parameters:
- 
          arr1- Data for the builder.
- 
          arr2- Data for the builder.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  buildVariablespublic Variable[][][] buildVariables(VariableBuilder.Array3Builder builder) Create a variable array from a builder.- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I> I buildVariables(VariableBuilder.Array3Builder builder, java.util.function.Supplier<I> makeResult, Action5<I,java.lang.Integer,java.lang.Integer,java.lang.Integer,Variable> addResult) Create a variable array from a builder. This is a parametrized version ofbuildVariables(VariableBuilder.Array3Builder).- Type Parameters:
- 
          I- Type for object that stores the created variables.
- Parameters:
- 
          builder- Builder to create variables.
- 
          makeResult- Function to create the (empty) result.
- 
          addResult- Function to add a variable to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  buildVariablespublic <K1,K2,K3> HashMap3<K1,K2,K3,Variable> buildVariables(VariableBuilder.Map3Builder<K1,K2,K3> builder) Create a variable map from a builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created Variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I,K1,K2,K3> I buildVariables(VariableBuilder.Map3Builder<K1,K2,K3> builder, java.util.function.Supplier<I> makeResult, Action5<I,K1,K2,K3,Variable> addResult) Create a variable map from a builder.- Type Parameters:
- 
          I- Type of result
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- Parameters:
- 
          builder- The builder to create variables.
- 
          makeResult- Function to create an (empty) result.
- 
          addResult- Function to add an element to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  addVariablespublic VariableBuilder.VariableArray3Builder addVariables(int dim1, int dim2, int dim3) Create an 3 dimensional array of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoArray()function.// Create a multi-dimensional array of binary variables Variable [] [] [] = prob.addColumns(dim1 ,dim2 ,dim3) .withType(com.dashoptimization.objects.ColumnType.Binary) .toArray();SeeVariableBuilder.VariableArray3Builderfor details of how to modify the specification in the builder.- Parameters:
- 
          dim1- Dimension 1.
- 
          dim2- Dimension 2.
- 
          dim3- Dimension 3.
- Returns:
- A builder that will create the variables.
- Since:
- 43.00
 
 -  addVariablespublic <K1,K2,K3> VariableBuilder.VariableMap3Builder<K1,K2,K3> addVariables(java.util.Collection<K1> coll1, java.util.Collection<K2> coll2, java.util.Collection<K3> coll3) Create an 3 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns com.dashoptimization.maps.HashMap3<K1 ,K2 ,K3,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ,coll2 ,coll3) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMap3Builderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- Parameters:
- 
          coll1- Data for dimension 1.
- 
          coll2- Data for dimension 2.
- 
          coll3- Data for dimension 3.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  addVariablespublic <K1,K2,K3> VariableBuilder.VariableMap3Builder<K1,K2,K3> addVariables(K1[] arr1, K2[] arr2, K3[] arr3) Create an 3 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns com.dashoptimization.maps.HashMap3<K1 ,K2 ,K3,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ,coll2 ,coll3) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMap3Builderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- Parameters:
- 
          arr1- Data for the builder.
- 
          arr2- Data for the builder.
- 
          arr3- Data for the builder.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  buildVariablespublic Variable[][][][] buildVariables(VariableBuilder.Array4Builder builder) Create a variable array from a builder.- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I> I buildVariables(VariableBuilder.Array4Builder builder, java.util.function.Supplier<I> makeResult, Action6<I,java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,Variable> addResult) Create a variable array from a builder. This is a parametrized version ofbuildVariables(VariableBuilder.Array4Builder).- Type Parameters:
- 
          I- Type for object that stores the created variables.
- Parameters:
- 
          builder- Builder to create variables.
- 
          makeResult- Function to create the (empty) result.
- 
          addResult- Function to add a variable to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  buildVariablespublic <K1,K2,K3,K4> HashMap4<K1,K2,K3,K4,Variable> buildVariables(VariableBuilder.Map4Builder<K1,K2,K3,K4> builder) Create a variable map from a builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- 
          K4- Data type for dimension 4.
- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created Variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I,K1,K2,K3,K4> I buildVariables(VariableBuilder.Map4Builder<K1,K2,K3,K4> builder, java.util.function.Supplier<I> makeResult, Action6<I,K1,K2,K3,K4,Variable> addResult) Create a variable map from a builder.- Type Parameters:
- 
          I- Type of result
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- 
          K4- Data type for dimension 4.
- Parameters:
- 
          builder- The builder to create variables.
- 
          makeResult- Function to create an (empty) result.
- 
          addResult- Function to add an element to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  addVariablespublic VariableBuilder.VariableArray4Builder addVariables(int dim1, int dim2, int dim3, int dim4) Create an 4 dimensional array of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoArray()function.// Create a multi-dimensional array of binary variables Variable [] [] [] [] = prob.addColumns(dim1 ,dim2 ,dim3 ,dim4) .withType(com.dashoptimization.objects.ColumnType.Binary) .toArray();SeeVariableBuilder.VariableArray4Builderfor details of how to modify the specification in the builder.- Parameters:
- 
          dim1- Dimension 1.
- 
          dim2- Dimension 2.
- 
          dim3- Dimension 3.
- 
          dim4- Dimension 4.
- Returns:
- A builder that will create the variables.
- Since:
- 43.00
 
 -  addVariablespublic <K1,K2,K3,K4> VariableBuilder.VariableMap4Builder<K1,K2,K3,K4> addVariables(java.util.Collection<K1> coll1, java.util.Collection<K2> coll2, java.util.Collection<K3> coll3, java.util.Collection<K4> coll4) Create an 4 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns com.dashoptimization.maps.HashMap4<K1 ,K2 ,K3 ,K4,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ,coll2 ,coll3 ,coll4) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMap4Builderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- 
          K4- Data type for dimension 4.
- Parameters:
- 
          coll1- Data for dimension 1.
- 
          coll2- Data for dimension 2.
- 
          coll3- Data for dimension 3.
- 
          coll4- Data for dimension 4.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  addVariablespublic <K1,K2,K3,K4> VariableBuilder.VariableMap4Builder<K1,K2,K3,K4> addVariables(K1[] arr1, K2[] arr2, K3[] arr3, K4[] arr4) Create an 4 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns com.dashoptimization.maps.HashMap4<K1 ,K2 ,K3 ,K4,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ,coll2 ,coll3 ,coll4) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMap4Builderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- 
          K4- Data type for dimension 4.
- Parameters:
- 
          arr1- Data for the builder.
- 
          arr2- Data for the builder.
- 
          arr3- Data for the builder.
- 
          arr4- Data for the builder.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  buildVariablespublic Variable[][][][][] buildVariables(VariableBuilder.Array5Builder builder) Create a variable array from a builder.- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I> I buildVariables(VariableBuilder.Array5Builder builder, java.util.function.Supplier<I> makeResult, Action7<I,java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,java.lang.Integer,Variable> addResult) Create a variable array from a builder. This is a parametrized version ofbuildVariables(VariableBuilder.Array5Builder).- Type Parameters:
- 
          I- Type for object that stores the created variables.
- Parameters:
- 
          builder- Builder to create variables.
- 
          makeResult- Function to create the (empty) result.
- 
          addResult- Function to add a variable to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  buildVariablespublic <K1,K2,K3,K4,K5> HashMap5<K1,K2,K3,K4,K5,Variable> buildVariables(VariableBuilder.Map5Builder<K1,K2,K3,K4,K5> builder) Create a variable map from a builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- 
          K4- Data type for dimension 4.
- 
          K5- Data type for dimension 5.
- Parameters:
- 
          builder- The builder to create variables.
- Returns:
- Created Variables.
- Since:
- 43.00
 
 -  buildVariablespublic <I,K1,K2,K3,K4,K5> I buildVariables(VariableBuilder.Map5Builder<K1,K2,K3,K4,K5> builder, java.util.function.Supplier<I> makeResult, Action7<I,K1,K2,K3,K4,K5,Variable> addResult) Create a variable map from a builder.- Type Parameters:
- 
          I- Type of result
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- 
          K4- Data type for dimension 4.
- 
          K5- Data type for dimension 5.
- Parameters:
- 
          builder- The builder to create variables.
- 
          makeResult- Function to create an (empty) result.
- 
          addResult- Function to add an element to the result.
- Returns:
- 
          Result as given by 
          makeResult.
- Since:
- 43.00
 
 -  addVariablespublic VariableBuilder.VariableArray5Builder addVariables(int dim1, int dim2, int dim3, int dim4, int dim5) Create an 5 dimensional array of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoArray()function.// Create a multi-dimensional array of binary variables Variable [] [] [] [] [] = prob.addColumns(dim1 ,dim2 ,dim3 ,dim4 ,dim5) .withType(com.dashoptimization.objects.ColumnType.Binary) .toArray();SeeVariableBuilder.VariableArray5Builderfor details of how to modify the specification in the builder.- Parameters:
- 
          dim1- Dimension 1.
- 
          dim2- Dimension 2.
- 
          dim3- Dimension 3.
- 
          dim4- Dimension 4.
- 
          dim5- Dimension 5.
- Returns:
- A builder that will create the variables.
- Since:
- 43.00
 
 -  addVariablespublic <K1,K2,K3,K4,K5> VariableBuilder.VariableMap5Builder<K1,K2,K3,K4,K5> addVariables(java.util.Collection<K1> coll1, java.util.Collection<K2> coll2, java.util.Collection<K3> coll3, java.util.Collection<K4> coll4, java.util.Collection<K5> coll5) Create an 5 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns com.dashoptimization.maps.HashMap5<K1 ,K2 ,K3 ,K4 ,K5,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ,coll2 ,coll3 ,coll4 ,coll5) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMap5Builderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- 
          K4- Data type for dimension 4.
- 
          K5- Data type for dimension 5.
- Parameters:
- 
          coll1- Data for dimension 1.
- 
          coll2- Data for dimension 2.
- 
          coll3- Data for dimension 3.
- 
          coll4- Data for dimension 4.
- 
          coll5- Data for dimension 5.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 -  addVariablespublic <K1,K2,K3,K4,K5> VariableBuilder.VariableMap5Builder<K1,K2,K3,K4,K5> addVariables(K1[] arr1, K2[] arr2, K3[] arr3, K4[] arr4, K5[] arr5) Create an 5 dimensional map of variables. This function returns a builder that generates variables according to a specification. The specification can be modified. In order to actually create the variables, you have to call the returned builder'stoMap()function.// Create a multi-dimensional array of binary columns com.dashoptimization.maps.HashMap5<K1 ,K2 ,K3 ,K4 ,K5,com.dashoptimization.objects.Variable> x = prob.addVariables(coll1 ,coll2 ,coll3 ,coll4 ,coll5) .withType(com.dashoptimization.objects.ColumnType.Binary) .toMap();SeeVariableBuilder.VariableMap5Builderfor details of how to modify the specification in the builder.- Type Parameters:
- 
          K1- Data type for dimension 1.
- 
          K2- Data type for dimension 2.
- 
          K3- Data type for dimension 3.
- 
          K4- Data type for dimension 4.
- 
          K5- Data type for dimension 5.
- Parameters:
- 
          arr1- Data for the builder.
- 
          arr2- Data for the builder.
- 
          arr3- Data for the builder.
- 
          arr4- Data for the builder.
- 
          arr5- Data for the builder.
- Returns:
- A builder that will create the columns.
- Since:
- 43.00
 
 
-  
 
-  
         
© 2001-2024 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.
 
